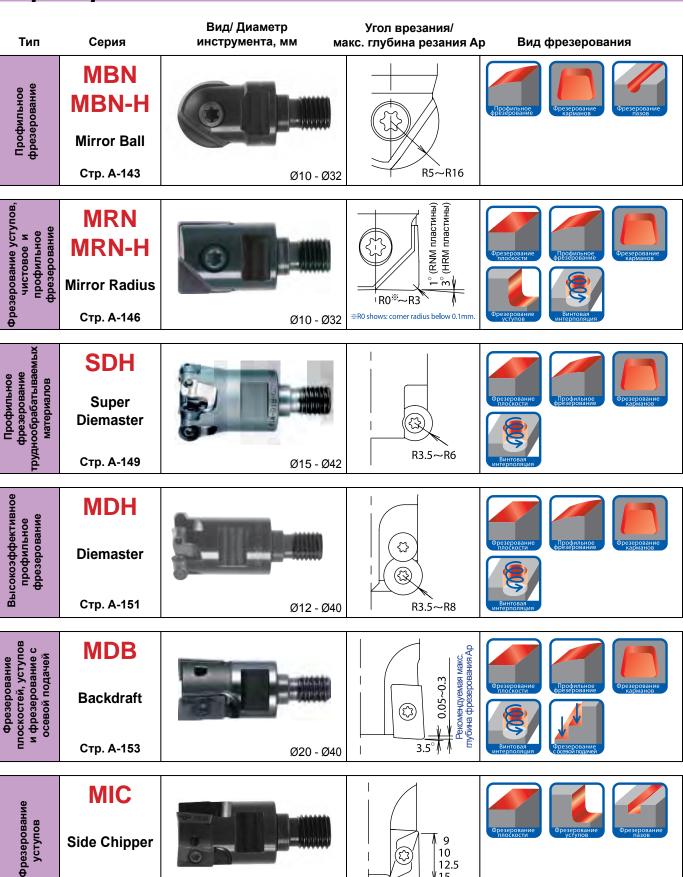


Фрезерные головки серии Tuff Modular System

Особенности:


- Производительность обработки в 2-3 раза выше, чем у фрез с классическим стальным корпусом. При использовании фрезерной системы **Tuff Modular System** снижается вибрация, сокращается время обработки и тем самым увеличивается эффективность использования инструмента.
- Любые типы обработки от черновой до чистовой за счет возможности комбинировать, используя 15 различных видов фрезерных головок.
- Унификация в одну оправку может быть установлено несколько различных видов головок.
- Возможность замены поврежденной фрезерной головки без замены оправки.
- Простая конструкция с резьбовым хвостовиком позволяет провести замену фрезерной головки без демонтажа оправки.
- Оправка G-Body обеспечивает высокую прочность, стойкость к коррозии и продлевает срок службы инструмента.

Виды фрезерных головок

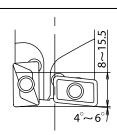
Ø16 - Ø40

Стр. А-154

 Тип
 Серия
 Вид / Диаметр инструмента, мм
 Угол врезания Ар макс. глубина резания Ар вид фрезерования

 WSW
 Swing Ball
 Swing Ball
 Стр. А-156
 Ø20 - Ø32
 Грофильное кразование кразование

Универсальное применение

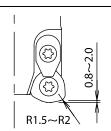

MEC

Super End-Chipper

Стр. А-157

Ø16 - Ø35

Фрезерование с высокими подачами

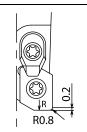

MSH

High Feed Diemaster

Стр. А-159

Ø16 - Ø40

Чистовое фрезерование плоскостей

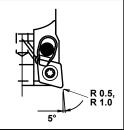

MFO

Indexable Finish-One

Стр. А-161

Ø17 - Ø21

сокоэффективнунивесальное применение

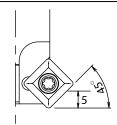

MXD

Rhombic Diemaster

Стр. А-162

Ø16 - Ø42

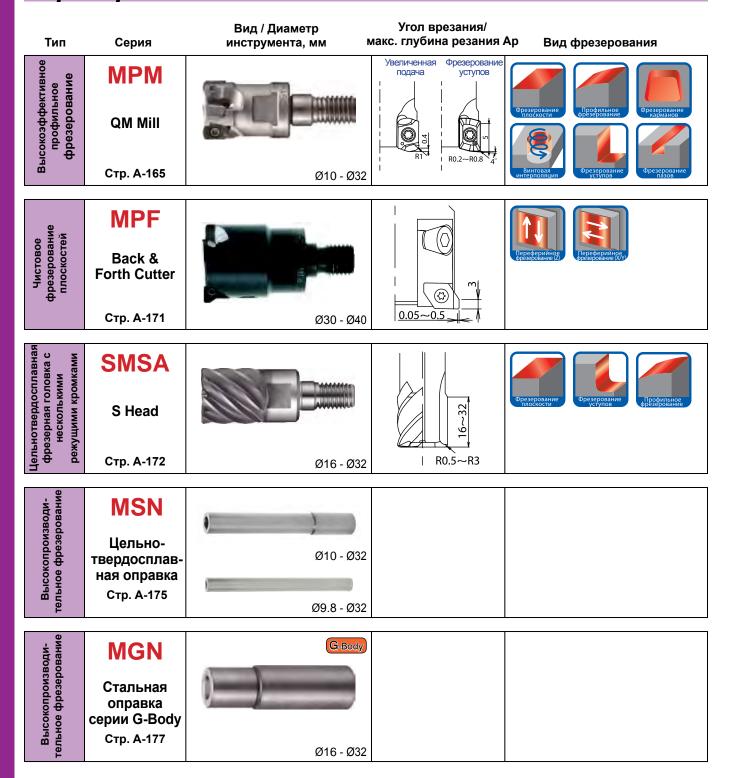
Фрезерование фасок

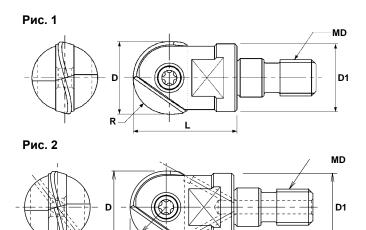

MCM

Chamfer Cutting

Стр. А-163

Ø8 - Ø32

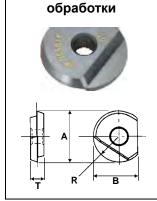




Cepuя MIRROR BALL Тип MBN

Номер по	Наличие на складе		Pa	змеры,	мм		Dura	Усилие	П=====	Комплекту	ющие	
каталогу	Нали на скла	D	R	L	D1	MD	Рис.	зажима Нм	Пластины	Винт	Ключ	
MBN-100-M6	•	10	5	18	9.7	M6	1	8	BNM-100	FSW-3007H	A-08	
MBN-100-M6-H	•	10	5	18	9.7	M6	2		DIVINI-100	1 300-300711	A-00	
MBN-120-M6	•	12	6	20	11.5	M6	1	. 8	BNM-120	FSW-3509	A-10	
MBN-120-M6-H	•	12	6	20	11.5	M6	2	0	BINIVI-120	F3W-3509	A-10	
MBN-160-M8	•	16	8	23	15	M8	1	16	BNM-160	FSW-4013	A-15	
MBN-160-M8-H	•	16	8	23	15	M8	2	10	DIVIVI-100	F3W-4013	A-15	
MBN-200-M10	•	20	10	30	18.5	M10	1	16	BNM-200	FSW-5016	A-20W	
MBN-200-M10-H	•	20	10	30	18.5	M10	2	10	BINIVI-200	F3W-3010	A-20VV	
MBN-250-M12	•	25	12.5	35	24	M12	1	20	BNM-250	FSW-6020	A-30	
MBN-250-M12-H	•	25	12.5	35	24	M12	2	20	BINIVI-230	F3W-0020	A-30	
MBN-300-M16	•	30	15	43	29	M16	1	25	BNM-300	FSW-8025	A-40	
MBN-300-M16-H	•	30	15	43	29	M16	2	25	or BNM-320	1 300-0023	A-40	
MBN-320-M16	•	32	16	43	29	M16	1	25	BNM-320	FSW-8025	A-40	
MBN-320-M16-H	•	32	16	43	29	M16	2	25	DINIVI-32U	F3VV-0U25	A-40	

Примечание: Все фрезы поставляются без пластин.



Cepuя MIRROR BALL Пластины

Серия Mirror Ball

Для чистовой

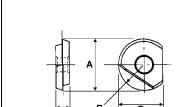
Uauan za		Размы	ры, мі	A	Рекомен	ідуемое	Спл	авы с п	окрыти		Сплавы без
Номер по каталогу	•	asivic	, IVII		усилие	усилие зажима				Алмазное покрытие	покрытия
каталогу	Α	R	В	Т	lbs./ft	Нм	JC8003	JC4015	JC5015	JC10000	KT9
BNM-100	10	5	8.5	2.6	.89	1.2	•	•	•	•	•
BNM-120	12	6	10	3	1.48	2.0	•	•	•	•	•
BNM-160	16	8	12	4	2.21	3.0	•	•	•	•	•
BNM-200	20	10	15	5	2.95	4.0	•	•	•	•	•
BNM-250	25	12.5	18.5	6	3.69	5.0	•	•	•	•	•
BNM-300	30	15	22.5	7	4.43	6.0	•	•	•	•	•
BNM-320	32	16	23.5	7	4.43	6.0	•	•	•	•	•

Серия Mirror Ball "S"

Для чистовой и получистовой	Номер по		Размер	ры, мм		Рекомен, усилие з		Спла	Наличи вы с ытием	Сплав	І аде вы без ытия
обработки	каталогу	Α	R	В	Т	lbs./ft	Нм	JC8008	JC8003	FZ05	ытия
	BNM-100-S	10	5	8.5	2.6	.89	1.2	•	•	•	
	BNM-120-S	12	6	10	3	1.48	2.0	•	•	•	
	BNM-160-S	16	8	12	4	2.21	3.0	•	•	•	
	BNM-200-S	20	10	15	5	2.95	4.0	•	•	•	
-\$	BNM-250-S	25	12.5	18.5	6	3.69	5.0	•	•	•	
A	BNM-300-S	30	15	22.5	7	4.43	6.0	•	•	•	
	BNM-320-S	32	16	23.5	7	4.43	6.0	•	•		
T R B	BNM-100-S-R	10	5	8.5	2.6	.89	1.2	•			
-S-R	BNM-120-S-R	12	6	10	3	1.48	2.0	•			
-3-K	BNM-160-S-R	16	8	12	4	2.21	3.0	•			
4	BNM-200-S-R	20	10	15	5	2.95	4.0	•			
T R±0.006	BNM-250-S-R	25	12.5	18.5	6	4.43	5.0	•			
B	BNM-300-S-R	30	15	22.5	7	4.43	6.0	•			

Примечание:

- 1. S-образная режущая кромка пластин серии Mirror «S» обеспечивает мягкое резание и эффективную обработку закаленных сталей на высоких скоростях.
- 2. Специально разработанное покрытие для чистовых операций обеспечивает высокую стойкость при высоких скоростях.
- 3. Точность изготовления радиуса составляет менее ±6 мкм. Это не уступает точности изготовления (а следовательно точности и качеству обработки) монолитных твердосплавных фрез.



Cepuя MIRROR BALL Высокоточные пластины

Допуск на радиус +/- 0,002 мм

Номер по		Размеј	ры, мм		Сплав с покрытием
каталогу	Α	R	В	Т	JC5015
BNM-100-AAA	10	5	8.5	2.6	•
BNM-120-AAA	12	6	10	3	•
BNM-160-AAA	16	8	12	4	•
BNM-200-AAA	20	10	15	5	•
BNM-250-AAA	25	12.5	18.5	6	•
BNM-300-AAA	30	15	22.5	7	•
BNM-320-AAA	32	16	23.5	7	•

Динамометрические ключи

Динамометрический ключ с ограничением максимального крутящего момента защищает корпус и режущую пластину от повреждений при монтаже.

Динамометрические ключи (со сменными вставками)

Номер по	Крутящий момент	Усили зажим		Сменная	Тип режущей пластины				
каталогу		lbs./ft	s./ft HM						
TQC-08	Т8	.89	1.2	B-08	BNM-100, RNM-100-R, HRM-100-R, HRM-110-R				
TQC-10	T10	1.48	2.0	B-10	BNM-120, RNM-120-R, RNM-130-R, HRM-120-R, HRM-130-R				

Рекомендации по монтажу пластин

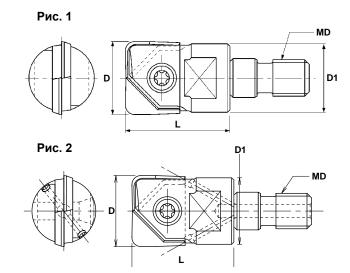
- 1. Тщательно протрите гнездо под пластину;
- 2. Протите саму пластину, особенно обратите внимание на отверстие и опорные поверхности;
- 3. Замените крепежный винт, в случае появления первых признаков износа резьбы. (частота замены примерно 10-15 пластин);
- 4. Соблюдайте рекомендованные усилия зажима крепежных винтов, указанные в таблице

D	Рекомендуемое	е усилие зажима
Винт	lbs./ft	Нм
FSW-3007H	.89	1.2
FSW-3509	1.48	2.0
FSW-4013	2.21	3.0
FSW-5016	2.95	4.0
FSW-6020	3.69	5.0
FSW-8025	4.43	6.0

Рекомендации по монтажу фрезерных головок

- 1. Тщательно протрите посадочные поверхности фрезерной головки и твердосплавной оправки;
- 2. Убедитесь, что после монтажа не осталось зазора между фрезерной головкой и твердосплавной оправкой;
- 3. Соблюдайте рекомендованные усилия затяжки фрезерной головки, указанные в таблице.

Сменная фрезерная головка	Рекомендуемое усилие затяжки фрезерной головки, Нм
M6	8
M8	16
M10	16
M12	20
M16	25

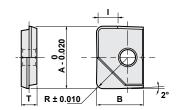


Cepuя MIRROR RADIUS Tun MRN

Номер по	чие аде		Размер	ы, мм		Dura	Усилие		Комплек	гующие
каталогу	Наличие на складе	D	L	D1	MD	Рис.	зажима Нм	Пластины	Винт	Ключ
MRN-100-M6	•	10	18	9.7	M6	1	8	RNM-100 HRM-100	FSW-3007H	A-08
MRN-100-M6-H	•	10	18	9.7	M6	2	0	HRM-110	1500-300711	A-00
MRN-120-M6	•	12	20	11.5	M6	1	8	RNM-120 RNM-130	FSW-3509	A-10
MRN-120-M6-H	•	12	20	11.5	M6	2	0	HRM-120 HRM-130	F3W-3309	A-10
MRN-160-M8	•	16	23	15	M8	1	16	RNM-160 RNM-170	FSW-4013	A-15
MRN-160-M8-H	•	16	23	15	M8	2	10	HRM-160 HRM-170	F3W-4013	A-15
MRN-200-M10	•	20	30	19	M10	1	16	RNM-200 RNM-210	FSW-5016	A-20W
MRN-200-M10-H	•	20	30	19	M10	2	10	HRM-200 HRM-220	F3W-5010	A-20VV
MRN-250-M12	•	25	35	24	M12	1	20	RNM-250	FSW-6020	A-30
MRN-250-M12-H	•	25	35	24	M12	2	20	RNM-260	F5VV-0020	A-30
MRN-300-M16	•	30	43	29	M16	1	25	RNM-300	FSW-8025	A-40
MRN-300-M16-H	•	30	43	29	M16	2	25	RNM-320	F3VV-0U25	A-40
MRN-320-M16	•	32	43	30	M16	1	25	DNIM 220	FCW 9025	A 40
MRN-320-M16-H	•	32	43	30	M16	2	25	RNM-320	FSW-8025	A-40

Примечание: Все фрезы поставляются без пластин.

Режимы резания см. стр. А-27 - А-30

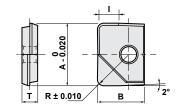


Cepuя MIRROR RADIUS

Цомор по		Do				Рекоменду				аличие		де		
Номер по каталогу		Pa	змеры,	ММ		усилие за	кима	Cı	плавы с	покры	гием	Алмазное покрытие	Сплавы без покрытия	
каталогу	Α	R	В	I	Т	lbs./ft	Нм	JC8003	JC5003	JC5015	JC8015		KT9	
RNM-100-R0	10	>0.1	8.5	3.3	2.6	.89	1.2				•			
RNM-100-R03	10	0.3	8.5	3.3	2.6	.89	1.2	•			•		•	
RNM-100-R05	10	0.5	8.5	3.3	2.6	.89	1.2	•	0		•	•	•	
RNM-100-R10	10	1.0	8.5	3.3	2.6	.89	1.2	•			•	•	•	
RNM-100-R15	10	1.5	8.5	3.3	2.6	.89	1.2	0	0		•		•	
RNM-100-R20	10	2.0	8.5	3.3	2.6	.89	1.2	•			•		•	
RNM-120-R0	12	>0.1	10	4	3	1.48	2.0				•			
RNM-120-R03	12	0.3	10	4	3	1.48	2.0	•			•		•	
RNM-120-R05	12	0.5	10	4	3	1.48	2.0	•			•	•	•	
RNM-120-R10	12	1.0	10	4	3	1.48	2.0	•			•	•	•	
RNM-120-R15	12	1.5	10	4	3	1.48	2.0	•	0	0	•		•	
RNM-120-R20	12	2.0	10	4	3	1.48	2.0	•			•		•	
RNM-130-R03	13	0.3	10	4	3	1.48	2.0				•			
RNM-130-R05	13	0.5	10	4	3	1.48	2.0				•			
RNM-130-R10	13	1.0	10	4	3	1.48	2.0				•			
RNM-130-R20	13	2.0	10	4	3	1.48	2.0				•			
RNM-160-R0	16	>0.1	12	5.3	4	2.21	3.0				•			
RNM-160-R03	16	0.3	12	5.3	4	2.21	3.0	•			•		•	
RNM-160-R05	16	0.5	12	5.3	4	2.21	3.0	•			•		•	
RNM-160-R10	16	1.0	12	5.3	4	2.21	3.0	•			•		•	
RNM-160-R15	16	1.5	12	5.3	4	2.21	3.0	•	0		•		•	
RNM-160-R20	16	2.0	12	5.3	4	2.21	3.0	•			•		•	
RNM-170-R03	17	0.3	12	5.3	4	2.21	3.0				•			
RNM-170-R05	17	0.5	12	5.3	4	2.21	3.0				•			
RNM-170-R10	17	1.0	12	5.3	4	2.21	3.0				•			
RNM-170-R20	17	2.0	12	5.3	4	2.21	3.0				•			
RNM-200-R0	20	>0.1	15	6.7	5	2.95	4.0				•			
RNM-200-R03	20	0.3	15	6.7	5	2.95	4.0	•			•		•	
RNM-200-R05	20	0.5	15	6.7	5	2.95	4.0	•			•		•	
RNM-200-R10	20	1.0	15	6.7	5	2.95	4.0	•			•		•	
RNM-200-R15	20	1.5	15	6.7	5	2.95	4.0	•	0		•		•	
RNM-200-R20	20	2.0	15	6.7	5	2.95	4.0	•			•		•	
RNM-200-R30	20	3.0	15	6.7	5	2.95	4.0				•			
RNM-210-R03	21	0.3	15	6.7	5	2.95	4.0			0	•			
RNM-210-R05	21	0.5	15	6.7	5	2.95	4.0			Ŏ	•			
RNM-210-R10	21	1.0	15	6.7	5	2.95	4.0			Ŏ	•			
RNM-210-R20	21	2.0	15	6.7	5	2.95	4.0			Ö	•			
RNM-250-R0	25	>0.1	18.5	8.3	6	3.69	5.0				•			
RNM-250-R03	25	0.3	18.5	8.3	6	3.69	5.0	•	0	0				
RNM-250-R05	25	0.5	18.5	8.3	6	3.69	5.0	•	Ö	Ö	•			
RNM-250-R10	25	1.0	18.5	8.3	6	3.69	5.0	•	Ö	Ö	•			
RNM-250-R15	25	1.5	18.5	8.3	6	3.69	5.0	•	Ö	Ö	•			
RNM-250-R20	25	2.0	18.5	8.3	6	3.69	5.0	•	Ö	Ö	•			
RNM-250-R30	25	3.0	18.5	8.3	6	3.69	5.0			Ö	•			

О позиция будет включена в складскую программу

О позиция будет исключена из складской программы

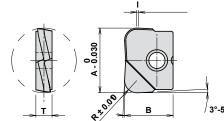


Серия MIRROR RADIUS

. Пластины

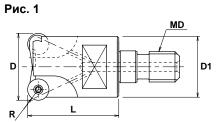
Номер по		Da	азмеры, г	ANA		Рекоменд	•	F	Іаличие	аличие на складе			
каталогу		1 6	ізмеры, і	AI IAI		усилие за	жима	Сг	ілавы с	покрыти	ем		
Ratadioty	Α	R	В	- 1	Т	lbs./ft	Нм	JC8003	JC5003	JC5015	JC8015		
RNM-260-R03	26	0.3	18.5	8.3	6	3.69	5.0			0	•		
RNM-260-R05	26	0.5	18.5	8.3	6	3.69	5.0			0	•		
RNM-260-R10	26	1.0	18.5	8.3	6	3.69	5.0			0	•		
RNM-260-R20	26	2.0	18.5	8.3	6	3.69	5.0			0	•		
RNM-300-R03	30	0.3	22.5	10	7	4.43	6.0	•	0	0	•		
RNM-300-R05	30	0.5	22.5	10	7	4.43	6.0	0	0	0	•		
RNM-300-R10	30	1.0	22.5	10	7	4.43	6.0	•	0	0	•		
RNM-300-R15	30	1.5	22.5	10	7	4.43	6.0	0	0	0	•		
RNM-300-R20	30	2.0	22.5	10	7	4.43	6.0	•	0	0	•		
RNM-300-R30	30	3.0	22.5	10	7	4.43	6.0			0	•		
RNM-320-R03	32	0.3	23.5	10.7	7	4.43	6.0	•	0	0	•		
RNM-320-R05	32	0.5	23.5	10.7	7	4.43	6.0	•	0	0	•		
RNM-320-R10	32	1.0	23.5	10.7	7	4.43	6.0	•	0	0	•		
RNM-320-R15	32	1.5	23.5	10.7	7	4.43	6.0	0	0	0	•		
RNM-320-R20	32	2.0	23.5	10.7	7	4.43	6.0	•	0	0	•		
RNM-320-R30	32	3.0	23.5	10.7	7	4.43	6.0			0	•		

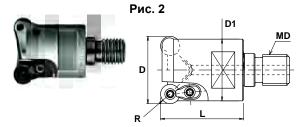
Серия High Feed Mirror Radius


Пластины

О позиция будет исключена из складской программы

Номер по		Pa	азмеры,	мм		Рекоменду усилие за			пичие на ск авы с покр	
каталогу	Α	R	В	1	Т	lbs./ft	Нм	JC5003	JC5015	JC8015
HRM-100-R05	10	0.5	8.5	0.3/0.5	2.6	.89	1.2			•
HRM-100-R10	10	1.0	8.5	0.3/0.5	2.6	.89	1.2			•
HRM-100-R20	10	2.0	8.5	0.3/0.5	2.6	.89	1.2			•
HRM-110-R20	11	2.0	8.5	0.3/0.5	2.6	.89	1.2			•
HRM-120-R05	12	0.5	10	0.3/0.5	3	1.48	2.0			•
HRM-120-R10	12	1.0	10	0.3/0.5	3	1.48	2.0			•
HRM-120-R20	12	2.0	10	0.3/0.5	3	1.48	2.0			•
HRM-130-R20	13	2.0	10	0.3/0.5	3	1.48	2.0			•
HRM-160-R10	16	1.0	12	0.3/0.5	4	2.21	3.0			•
HRM-160-R20	16	2.0	12	0.3/0.5	4	2.21	3.0			•
HRM-160-R30	16	3.0	12	0.3/0.5	4	2.21	3.0			•
HRM-170-R30	17	3.0	12	0.3/0.5	4	2.21	3.0			•
HRM-200-R10	20	1.0	15	0.3/0.5	5	2.95	4.0			•
HRM-200-R20	20	2.0	15	0.3/0.5	5	2.95	4.0			•
HRM-200-R30	20	3.0	15	0.3/0.5	5	2.95	4.0			•
HRM-220-R30	22	3.0	15	0.3/0.5	5	2.95	4.0			•





Cepuя SUPER DIEMASTER Тип SDH

Стандартный шаг

Спаноартпныс	лпаноартный шаг														
Номер по	Наличие на складе		Раз	меры	, мм		Direc	Усилие зажима			Комп	пектующ	ие		
каталогу	Нали	D	R	L	D1	MD	Рис.	Зажима Нм	Пластины	Q	Винт	Ключ	Прижим		
SDH-2150-R07-M8	•	15	3.5	23	13.8	M8	1	16	RD**07T2MO*	2	TSW-2556H	A-08SD	-		
SDH-2160-R07-M8	•	16	3.5	23	15	M8	1	16	RD**07T2MO*	2	TSW-2556H	A-08SD	-		
SDH-2200-R07-M10	•	20	3.5	30	18	M10	1	16	RD**07T2MO*	2	TSW-2556H	A-08SD	-		
SDH-2220-R07-M10	•	22	3.5	30	20	M10	1	16	RD**07T2MO*	2	TSW-2556H	A-08SD	-		
SDH-2250-R10-M12	•	25	5	35	23	M10	2	20	RD**1004MO*	2	CSW-408H	A-15	DCM-18		
SDH-2280-R10-M12	•	28	5	35	25	M12	2	20	RD**1004MO*	2	CSW-408H	A-15	DCM-18		
SDH-2300-R10-M16	•	30	5	43	28	M16	2	25	RD**1004MO*	2	CSW-408H	A-15	DCM-18		
SDH-2320-R12-M16	•	32	6	43	28	M16	2	25	RD**1204MO*	2	DSW-410H	A-15	DCM-18		
SDH-3320-R10-M16	•	32	5	43	28	M16	2	25	RD**1004MO*	3	CSW-408H	A-15	DCM-18		
SDH-2350-R12-M16	•	35	6	43	32	M16	2	25	RD**1204MO*	2	DSW-410H	A-15	DCM-18		
SDH-3350-R10-M16	•	35	5	43	32	M16	2	25	RD**1004MO*	3	CSW-408H	A-15	DCM-18		
SDH-2400-R12-M16	•	40	6	43	32	M16	2	25	RD**1204MO*	2	DSW-410H	A-15	DCM-18		

Примечание: Все фрезы поставляются без пластин.

Мелкий шаг

ielikuu wae												
Номер по	Наличие на складе		Раз	меры	, мм		Dura	Усилие зажима			Комплен	тующие
каталогу	Нали	D	R	L	D1	MD	Рис.	зажима Нм	Пластины	Q	Винт	Ключ
SDH-3200-R07-M10	•	20	3.5	30	18	M10	1	16	RD**07T2MO*	3	TSW-2556H	A-08SD
SDH-3220-R07-M10	•	22	3.5	30	20	M10	1	16	RD**07T2MO*	3	TSW-2556H	A-08SD
SDH-3250-R07-M12	•	25	3.5	35	23	M12	1	20	RD**07T2MO*	3	TSW-2556H	A-15
SDH-3250-R10-M12	•	25	5	35	23	M12	1	20	RD**1004MO*	3	CSW-408H	A-15
SDH-3280-R10-M12	•	28	5	35	25	M12	1	20	RD**1004MO*	3	CSW-408H	A-15
SDH-3300-R10-M16	•	30	5	43	28	M16	1	25	RD**1004MO*	3	CSW-408H	A-15
SDH-4300-R10-M16	•	30	5	43	28	M16	1	25	RD**1004MO*	4	CSW-408H	A-15
SDH-4320-R10-M16	•	32	5	43	28	M16	1	25	RD**1004MO*	4	CSW-408H	A-15
SDH-3350-R12-M16	•	35	6	43	32	M16	1	25	RD**1204MO*	3	DSW-410H	A-15
SDH-4350-R10-M16	•	35	5	43	32	M16	1	25	RD**1004MO*	4	CSW-408H	A-15
SDH-4400-R12-M16	•	40	6	43	32	M16	1	25	RD**1204MO*	4	DSW-410H	A-15
SDH-5420-R10-M16	•	42	5	43	32	M16	1	25	RD**1004MO*	5	CSW-408H	A-15

Примечание: Все фрезы поставляются без пластин.

Рекомендации по выбору типа пластин и сплавов

Обрабатываемые материалы	Чугун, Литейные стали		одистые ованные			повые али	Закаленные стали		не сплавы ные сплавы	-	веющие али	Алюминий
Сплавы	JC8015 JC5118	JC5040	JC5118	JC8050	JC8015 JC5118	JC8050	JC8003 (свыше 50HRC) JC8015 JC5118	JC8015 JC5118	JC8050	JC8015 JC5118	JC8050	FZ05
RDMW07T2MOT	•	•			•		•	0		0		
RD*T07T2MOE	*		*	•	0	•		•	•	•	•	
RDGT07T2MOF-AL												•
RDMW1004MOT	•	•			•		0	0		0		
RD*T1004MOT	*		*		0					•		
RD*T1004MOE				•		•		•	•		•	
RDGT1004MOF-AL												•
RDMW1204MOT	•	•			•		•	0		0		
RD*T1204MOT	*		*		0					•		
RD*T1204MOE				•		•		•	•		•	
RDGT1204MOF-AL												•
RDMW1606MOT	0	•			•		0	0		0		
RD*T1606MOT	*		*		0					•		
RD*T1606MOE				•		•		•	•		•	
RDGT1606MOF-AL												•

RDMW - без стружколома

RDGT - со стружколомом

Условия резания:

О - Нормально ★ - Только

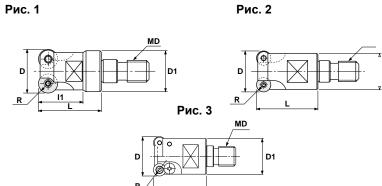
для чистовой

обработки

Пластины

Рис. 1

Номер по	Класс	Раз	меры	, мм	Dura		Сплав	ы с покр	ытием		Сплавы без покрытия
каталогу	точности	D	Т	d	Рис.	JC8003	JC8015	JC5040	JC8050	JC5118	FZ05
RDMW07T2MOT	M	7	2.7	2.8	1	•	•	•			
RDMW1004MOT	M	10	4.1	4.4	1	•	•	•			
RDMW1204MOT	M	12	4.8	4.4	1	•	•	•			
RDMW1606MOT	M	16	6	5	1	•	•	•			
RDGT07T2MOE	G	7	2.7	2.8	2		•		•		
RDGT1004MOE	G	10	4.1	4.4	2		•		•		
RDGT1004MOT	G	10	4.1	4.4	2		•		•		
RDGT1204MOE	G	12	4.8	4.4	2		•		•		
RDGT1204MOT	G	12	4.8	4.4	2		•		•		
RDGT1606MOE	G	16	6	5	2		•		•		
RDGT1606MOT	G	16	6	5	2		•		•		
RDMT07T2MOE	M	7	2.7	2.8	2		•		•	•	
RDMT1004MOE	M	10	4.1	4.4	2		•		•	•	
RDMT1004MOT	M	10	4.1	4.4	2		•		•	•	
RDMT1204MOE	M	12	4.8	4.4	2		•		•	•	
RDMT1204MOT	M	12	4.8	4.4	2		•		•	•	
RDMT1606MOE	М	16	6	5	2		•		•	•	
RDMT1606MOT	М	16	6	5	2		•		•	•	
RDGT07T2MOF-AL	G	7	2.7	2.8	3						•
RDGT1004MOF-AL	G	10	4.1	4.4	3						•
RDGT1204MOF-AL	G	12	4.8	4.4	3						•
RDGT1606MOF-AL	G	16	6	5	3						•



Cepuя DIEMASTER Тип MDH

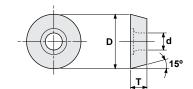
Номер по	Наличие на складе		Разі	иеры	ı, mm		Рис.	Усилие	Пластины		Комп.	лектующие	
каталогу	Налу СКЛ	D	R	L	D1	MD	гис.	зажима Нм	Пластины	Q	Винт	Ключ	Прижим
MDH-2120-M8	•	12	3.5	23	15	M8	1	16	RDHX0701MO*	2	CSW-2542	A-07	-
MDH-2160-M8	•	16	3.6	23	15	M8	1	16	RDHX0702MO*	2	CSW-2547	A-07	-
MDH-2200-M10	•	20	5	30	19	M10	1	16	RDHX1003MO*	2	CSW-3570	A-15	-
MDH-2250-M12	•	25	5	35	21	M12	2	20	RDHX1003MO*	2	CSW-3570	A-15	-
MDH-3320-R10-M16	•	32	5	43	29	M16	3	25	RDHX1003MO*	3	CSW-3575	A-15	CB3540
MDH-2320-R16-M16	•	32	8	43	29	M16	2	25	RD*X1604MO*	2	CSW-4510	A-20SD	-
MDH-4400-M16	•	40	6	42	29	M16	3	25	RD*X12T3MO*	4	CSW-3595	A-15	CB3540

Примечание: Все фрезы поставляются без пластин.

Фрезерные головки для высокоскоростной обработки

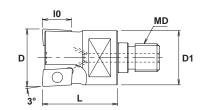
						•		•					
Номер по	Іаличие на складе		Рази	иерь	I, MM		Рис.	Усилие			Компл	пектуюц	цие
каталогу	Наличие на складе	D	R	L	D1	MD	гис.	зажима Нм	Пластины	Q	Винт	Ключ	Прижим
MDH-3160-M8	•	16	3.5	23	15	M8	1	16	RDHX0701MOT	3	CSW-2542	A-07	-
MDH-4160-M8	•	16	2.5	23	13.7	M8	2	16	RDHX0501MOT	4	CSW-1838	A-06	-
MDH-4200-M10	•	20	3.5	30	17.6	M10	2	16	RDHX0701MOT	4	CSW-2547	A-07	-
MDH-5200-M10	•	20	2.5	30	17.8	M10	2	16	RDHX0501MOT	5	CSW-1838	A-06	-
MDH-5250-M12	•	25	3.5	35	20.8	M12	2	20	RDHX0702MOT	5	CSW-2547	A-07	-
MDH-6350-M16	•	35	3.5	43	29	M16	2	25	RDHX0702MOT	6	CSW-2547	A-07	-

Примечание: Все фрезы поставляются без пластин.



Cepuя DIEMASTER Пластины

Номер по	Класс	Pa	змеры,	мм		Сплавы с і	токрытием	ı	Сплавы без покрытия	
каталогу	точности	D	Т	d	JC8003	JC8015	JC5030	JC5040	CX90	KT9
RDHX0501MOT	Н	5	1.5	2.0	•	•				
RDHX0701MOT	Н	7	1.99	2.8	•	•	•	•	•	
RDHX0702MOT	Н	7	2.38	2.8	•	•	•	•	•	
RDHX1003MOT	Н	10	3.18	3.9	•	•	•	•	•	
RDHX12T3MOF	Н	12	3.97	3.9						•
RDHX12T3MOT	Н	12	3.97	3.9	•	•	•	•	•	
RDMX12T3MOT	М	12	3.97	3.9			•	•		
RDHX1604MOT	Н	16	4.76	5.0	•	•	•	•	•	
RDMX1604MOT	М	16	4.76	5.0		•	•	•		



Серия BACKDRAFT Тип MDB

Номер по	Наличие на складе		Разі	меры, м	IM		Усилие	Пластины	Q	Комплект	ующие
каталогу	Налу	D	L	10	D1	MD	зажима Нм	Пластины	Q	Винт	Ключ
MDB-1020-M10		20	35	16	19	M10	16		1		
MDB-2025-M12	•	25	35	16	23	M12	20		2	DSW-4075	
MDB-2026-M12	•	26	35	16	24	M12	20	DBD170408	2		A-15
MDB-2032-M16	•	32	43	16	30	M16	25	DBD170408-30	2		A-15
MDB-2033-M16	•	33	43	16	31	M16	25	5	2 DSW-4085		
MDB-3040-M16	•	40	43	16	32	M16	25		3		

Примечание: Все фрезы поставляются без пластин.

Пластины

Рис. 1

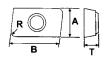


Рис. 2

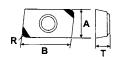
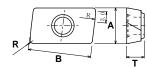
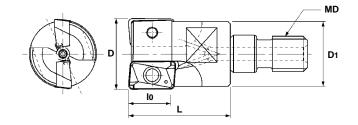



Рис. 3 (для лучшей чистоты поверхности)

		Decree						ічие на с	кладе	
Номер по каталогу		Размер	оы, мм		Рис.	КНБ	Спла покрь		Керметы	
ka rajioi y	Α	В	Т	R		JBN330	JC8015	JC8003	CX75	CX90
DBD170408	9.525	16.669	4.762	0.8	1		•			•
DBD170408	9.525	16.669	4.762	0.8	2	•				
DBD170408-30	9.525	16.669	4.762	0.8	3			•	•	

Режимы резания см. стр. А-76 - А-77

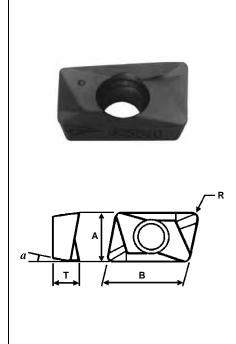


Cepuя SIDE CHIPPER Тип MIC

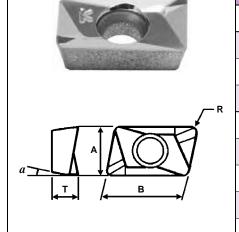
Номер по	чие в		Pas	змеры,	мм		Усилие	Пластины		Комплект	гующие
каталогу	Наличие на складе	D	L	lo	D1	MD	зажима Нм	Пластины	Q	Винт	Ключ
MIC-2016-M8		16	23	9	14.6	M8	16	ZCMT1003R	2	ESW-206	A-08SD
MIC-2018-M8	•	18	23	9	15.5	M8	16	ZCMT1003R	2	ESW-206	A-08SD
MIC-2020-M10	•	20	30	9	18.4	M10	16	ZCMT1003R	2	ESW-206	A-08SD
MIC-3020-M10	•	20	30	9	18.4	M10	16	ZCMT1003R	3	ESW-206	A-08SD
MIC-2022-M10	•	22	30	12.5	19.5	M10	16	ZPMT13T3R	2	DSW-307	A-10
MIC-3022-M10	•	22	30	9	19.5	M10	16	ZCMT1003R	3	ESW-206	A-08SD
MIC-2025-M12	•	25	35	15	23	M12	20	ZPMT1604R	2	TSW-408	A-15
MIC-3025-M12	•	25	35	12.5	23	M12	20	ZPMT13T3R	3	DSW-307	A-10
MIC-2027-M12	•	27	35	15	24	M12	20	ZPMT1604R	2	TSW-408	A-15
MIC-3027-M12	•	27	35	12.5	24	M12	20	ZPMT13T3R	3	DSW-307	A-10
MIC-3030-M16	•	30	43	15	28.2	M16	25	ZPMT1604R	3	TSW-408	A-15
MIC-2032-M16	•	32	43	15	29	M16	25	ZPMT1604R	2	TSW-408	A-15
MIC-3032-M16	•	32	43	15	29	M16	25	ZPMT1604R	3	TSW-408	A-15
MIC-2035-M16	•	35	43	15	29	M16	25	ZPMT1604R	2	TSW-408	A-15
MIC-4040-M16	•	40	43	15	29	M16	25	ZPMT1604R	4	TSW-408	A-15
MIC-5040-M16	•	40	43	12.5	29	M16	25	ZPMT13T3R	5	DSW-307	A-10

Примечание: Все фрезы поставляются без пластин.

Режимы резания см. стр. А-89 - А-91



Cepuя SIDE CHIPPER Пластины


Пластины

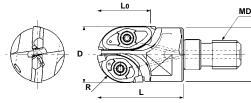
Номер по каталогу		Pa	змеры, і	мм		Наличие на складе		
na razior y	Α	В	Т	R	а	JC5015	JC5040	
ZCMT100304R	6.35	10.4	3.4	0.4	7°	•	•	
ZCMT100308R	6.35	10.4	3.4	0.8	7°	•	•	
ZPMT13T308R	7.938	13.3	3.97	0.8	11°	•	•	
ZPMT13T316R	7.938	13.3	3.97	1.6	11°	•	•	
ZPMT13T320R	7.938	13.3	3.97	2.0	11°	•	•	
ZPMT160404R	9.525	16	4.76	0.4	11°	•	•	
ZPMT160408R	9.525	16	4.76	0.8	11°	•	•	
ZPMT160416R	9.525	16	4.76	1.6	11°	•	•	
ZPMT160420R	9.525	16	4.76	2.0	11°	•	•	
**ZPMT160430R	9.525	16	4.76	3.0	11°	•	•	
**ZPMT160432R	9.525	16	4.76	3.2	11°	•	•	

^{**} Примечание: Будьте внимательны при использовании пластин с радиусом 3 мм, т.к. корпус может быть выполнен с радиусом 1,5 мм или фаской 1,2 мм.

Полированные пластины для алюминия

Номер по каталогу			на складе Сплавы без покрытия			
каталогу	Α	В	T	R	а	FZ15
ZCMT100308RP	6.35	10.4	3.4	0.8	7°	•
ZPMT13T308RP	7.938	13.3	3.97	0.8	11°	•
ZPMT13T316RP	7.938	13.3	3.97	1.6	11°	•
ZPMT13T320RP	7.938	13.3	3.97	2.0	11°	•
ZPMT160408RP	9.525	16	4.76	0.8	11°	•
ZPMT160416RP	9.525	16	4.76	1.6	11°	•
ZPMT160420RP	9.525	16	4.76	2.0	11°	•
**ZPMT160430RP	9.525	16	4.76	3.0	11°	•
**ZPMT160432RP	9.525	16	4.76	3.2	11°	•

^{**} Примечание: Будьте внимательны при использовании пластин с радиусом 3 мм, т.к. корпус может быть выполнен с радиусом 1,5 мм или фаской 1,2 мм.



Серия SWING BALL

Номер по	тчие а аде		Р	азме	ры, м	М		Усилие	Птоотии	Комплектун	ощие
каталогу	Наличие на складе	D	R	L	Lo	D1	MD	зажима Нм	Пластины	Винт	Ключ
MSW-2018-M10	•	20	10	30	18.5	18.7	M10	16	SWB220HM (1) SWB220HS (1)	DSW-307H	A-10
MSW-2522-M12	•	25	12.5	35	21.9	23.5	M12	20	SWB225HM (1) SWB225HS (1)	DSW-4085	A-15
MSW-3025-M16	•	30	15	43	25.9	28.2	M16	25	SWB230HM (1) SWB230HS (1)	DSW-509	A-20
MSW-3225-M16	•	32	16	43	29.5	29.9	M16	25	SWB232HM-G (1) SWB232HS-G (1)	TSW-511	A-20

Примечание: Все фрезы поставляются без пластин.

При обработке сварных швов и материалов с повышенной твердостью используйте пластины см рис. 3 и 4.

Пластины

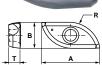
Рис. 1

Рис. 2

Рис. 3

Рис. 4

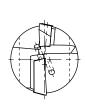
Рис. 5 (для получистовой обработки)

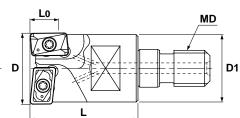


Номер по		Размеј	ры, мм		Dura	Спла	вы с покры	ытием
каталогу	R	Α	В	Т	Рис.	JC5015	JC5040	JC8015
SWB220HM	10	15.8	9.9	3.65	1		•	•
SWB220-HM-H	10	16	9.9	3.65	5	0		•
SWB220HS	10	20	8.2	3.65	2		•	•
SWB220MmW	10	15.8	9.9	3.65	3			•
SWB220MSW	10	20	8.2	3.65	4			•
SWB225HM	12.5	18.5	12.4	3.8	1		•	•
SWB225HM-H	12.5	18.9	12.4	3.8	5	0		•
SWB225HS	12.5	23.8	10.5	3.8	2		•	•
SWB225MmW	12.5	18.5	12.4	3.8	3			•
SWB225MSW	12.5	23.8	10.5	3.8	4			•
SWB230HM	15	22.2	14.8	5.35	1		•	•
SWB230HM-H	15	22.4	14.8	5.35	5			•
SWB230HS	15	27.5	12.3	5.35	2		•	•
SWB230MmW	15	22.2	14.8	5.35	3			•
SWB230MSW	15	27.5	12.3	5.35	4			•
SWB232HM-G	16	26	16	5.35	1		•	•
SWB232HS-G	16	31.7	13.9	5.35	2		•	•
SWB232MmW-G	16	26	16	5.35	3			•
SWB232MSW-G	16	31.7	13.9	5.35	4			•

О позиция будет включена в складскую программу

О позиция будет исключена из складской программы

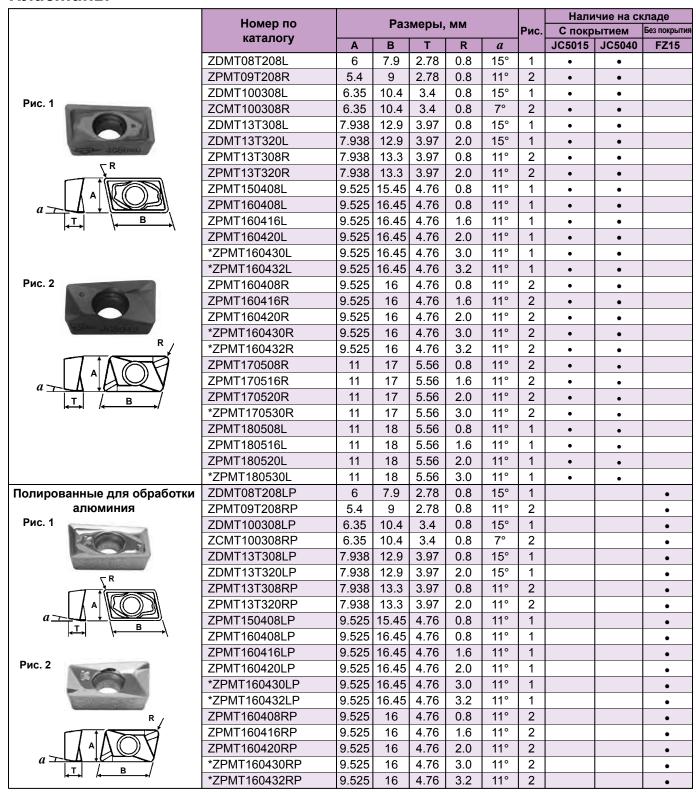




Cepuя SUPER END-CHIPPER *Tun MEC*

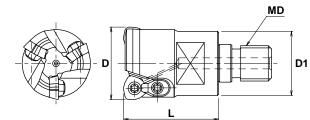
Номер по	Наличие на складе		Раз	меры,	мм		Усилие зажима		Комплекту	/ющие
каталогу	Hany	D	L	Lo	D1	MD	зажима Нм	Пластины	Винт	Ключ
MEC-2016-M8	•	16	23	8	14.8	M8	16	ZDMT08T208L (1) ZPMT09T208R (1)	TSW-2250	A-07SD
MEC-2020-M10	•	20	30	9	18.7	M10	16	ZDMT100308L (1) ZCMT100308R (1)	ESW-206	A-08SD
MEC-2021-M10	•	21	30	9	19.6	M10	16	ZDMT100308L (1) ZCMT100308R (1)	ESW-206	A-08SD
MEC-2024-M12		24	35	12.5	22.2	M12	20	ZDMT13T3L (1) ZPMT13T3R (1)	DSW-307	A-10
MEC-2025-M12	•	25	35	12.5	23.2	M12	20	ZDMT13T3L (1) ZPMT13T3R (1)	DSW-307	A-10
MEC-2026-M12	•	26	35	12.5	24.1	M12	20	ZDMT13T3L (1) ZPMT13T3R (1)	DSW-307	A-10
MEC-2030-M16	•	30	43	15	28.2	M16	25	ZPMT150408L(1) ZPMT160408R (1)	TSW-408	A-15
MEC-2032-M16	•	32	43	15	30.2	M16	25	ZPMT1604L (1) ZPMT1604R (1)	TSW-408	A-15
MEC-2033-M16	•	33	43	15	31	M16	25	ZPMT1604L (1) ZPMT1604R (1)	TSW-408	A-15
MEC-2035-M16	•	35	43	16	32	M16	25	ZPMT1805L (1) ZPMT1705R (1)	DSW-4510H	A-20SD

Примечание: Все фрезы поставляются без пластин.



Cepuя SUPER END-CHIPPER

^{**} **Примечание:** Будьте внимательны при использовании пластин с радиусом 3 мм, т.к. корпус может быть выполнен с радиусом 1,5 мм или фаской 1,2 мм.



Cepuя HIGH FEED DIEMASTER Tun MSH

Номер по	ичие зде	Р	азмер	ы, мі	М	Усилие	П		Комп	лектующи	ie
каталогу	Наличие на складе	D	L	D1	MD	зажима Нм	Пластины	Q	Винт	Ключ	Прижим
MSH-2016-M8	•	16	23	15	M8	16	WO**04T215Z*R	2	TSW-2556H	A-08SD	-
MSH-2017-M8	•	17	23	15	M8	16	WO**04T215Z*R	2	TSW-2556H	A-08SD	-
MSH-2020-M10	•	20	30	19	M10	16	WD**050316Z*R	2	DSW-306H	A-10	-
MSH-2021-M10	•	21	30	19	M10	16	WD**050316Z*R	2	DSW-306H	A-10	-
MSH-2022-M10	•	22	30	19	M10	16	WD**050316Z*R	2	DSW-306H	A-10	-
MSH-2025-M12	•	25	35	23.6	M12	20	WD**06T320Z*R	2	CSW-408H	A-15	DCM-18
MSH-2026-M12	•	26	35	23.6	M12	20	WD**06T320Z*R	2	CSW-408H	A-15	DCM-18
MSH-2028-M12*	•	28	35	23.6	M12	20	WD**06T320Z*R	2	CSW-408H	A-15	DCM-18
MSH-2030-M16*	•	30	43	29	M16	25	WD**06T320Z*R	2	CSW-408H	A-15	DCM-18
MSH-2032-M16	•	32	43	29	M16	25	WD**080520Z*R	2	DSW-4510H	A-20SD	DCM-17
MSH-3032-M16	•	32	43	29	M16	25	WD**06T320Z*R	3	CSW-408H	A-15	DCM-18
MSH-2033-M16*	•	33	43	29	M16	25	WD**080520Z*R	2	DSW-4510H	A-20SD	DCM-17
MSH-3033-M16	•	33	43	29	M16	25	WD**06T320Z*R	3	CSW-408H	A-15	DCM-18
MSH-2035-M16	•	35	43	29	M16	25	WD**080520Z*R	2	DSW-4510H	A-20SD	DCM-17
MSH-3035-M16	•	35	43	29	M16	25	WD**06T320Z*R	3	CSW-408H	A-15	DCM-18

^{*} Стандартный корпус

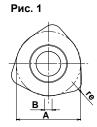
Примечание: Все фрезы поставляются без пластин.

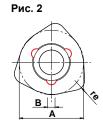
- Мелкий шаг

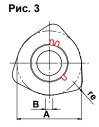
Номер по	Наличие на складе	P	азмер) Ы, МІ	И	Усилие	Птоотии		Комп	лектующи	ie
каталогу	Нал	D	L	D1	MD	зажима Нм	Пластины	Q	Винт	Ключ	Прижим
MSH-3020-M10	•	20	30	19	M10	16	WO**04T215Z*R	3	TSW-2556H	A-08SD	-
MSH-3021-M10	•	21	30	19	M10	16	WO**04T215Z*R	3	TSW-2556H	A-08SD	1
MSH-3022-M10	•	22	30	20	M10	16	WO**04T215Z*R	3	TSW-2556H	A-08SD	1
MSH-3025-M12	•	25	35	23.6	M12	20	WD**050316Z*R	3	DSW-306H	A-10	-
MSH-3026-M12	•	26	35	23.6	M12	20	WD**050316Z*R	3	DSW-306H	A-10	-
MSH-3028-M12	•	28	35	23.6	M12	20	WD**050316Z*R	3	DSW-306H	A-10	-
MSH-3030-M16	•	30	43	29	M16	25	WD**050316Z*R	3	DSW-306H	A-10	-
MSH-4032-M16	•	32	43	29	M16	25	WD**050316Z*R	4	DSW-306H	A-10	-
MSH-5040-M16	•	40	43	32	M16	25	WD**050316Z*R	5	DSW-306H	A-10	-

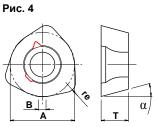
Режимы резания см. стр. А-130 - А-131

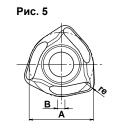
Примечание: Все фрезы поставляются без пластин.

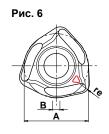


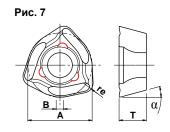





Серия HIGH FEED DIEMASTER, пластины без стружколома



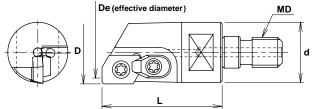

	Класс		Pas	змеры,	ММ		С	плавы с	PVD пок	оытием	
Номер по каталогу	точности	Α	В	Т	re	α	JC8015	JC8050	JC5015	JC5040	JC5118
WOMW04T215ZER	М	6.5	8.0	2.8	1.5	13°	• (Рис. 1)	• (Рис. 1)		• (Рис. 2)	• (Рис. 1)
WDMW050316ZTR	М	8	1.0	3.2	1.6	15°	• (Рис. 1)	• (Рис. 1)		• (Рис. 2)	• (Рис. 1)
WDMW06T320ZTR	М	10	1.2	3.97	2.0	15°	• (Рис. 1)	• (Рис. 1)		• (Рис. 2)	• (Рис. 3)
WDMW080520ZTR	М	13	1.5	5.5	2.0	15°	• (Рис. 3)	• (Рис. 3)		• (Рис. 4)	• (Рис. 1)
WDHW050316ZTR	Н	8	1.0	3.2	1.6	15°			• (Рис. 1)	• (Рис. 2)	
WDHW06T320ZTR	Н	10	1.2	3.97	2.0	15°			• (Рис. 1)	• (Рис. 2)	
WDHW080520ZTR	Н	13	1.5	5.5	2.0	15°			• (Рис. 1)	• (Рис. 2)	


Cepuя HIGH FEED DIEMASTER, пластины со стружколомом

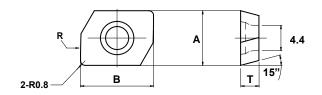
	Класс		Pas	вмеры,	мм		Сплавь	ı с PVD по	крытием	Сплавы с CV	D покрытием
Номер по каталогу	точности	Α	В	Т	re	α	JC8015	JC8050	JC5118	JC600	JC730U
WOMT04T215ZER	М	6.5	8.0	2.8	1.5	13°	• (Рис. 5)	• (Рис. 7)	• (Рис. 5)		
WDMT050316ZER	М	8	1.0	3.2	1.6	15°	• (Рис. 5)	• (Рис. 6)	• (Рис. 5)		
WDMT06T320ZER	М	10	1.2	3.97	2.0	15°	• (Рис. 5)	• (Рис. 6)	• (Рис. 5)		
WDMT080520ZER	М	13	1.5	5.5	2.0	15°	• (Рис. 5)	• (Рис. 6)	• (Рис. 5)	• (Рис. 5)	• (Рис. 6)

Рекомендации для составления управляющей программы

Размер пластины	W	Ар	Т	A1	R
04	2.7	0.8	0.29	8.0	1.5
05	3.6	1.25	0.35	1.2	2.0
06	4.5	1.5	0.44	1.5	3.0
08	6	2.0	0.63	2.0	3.0



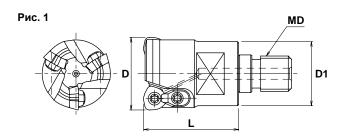
Cepuя FINISH-ONE Тип MFO

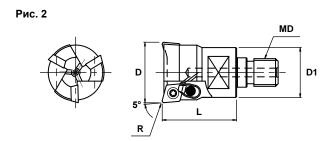


Номер по	ичие на паде	P	азмер	ы, мі	N	Усилие	Птоотии)	Комп	лектующи	1e
каталогу	Налу н Скла	D	L	De	MD	зажима Нм	Пластины	Q	Винт	Ключ	Прижим
MFO-170-M8	•	17	40	13.5	M8	16	LDGW120308	1	CSW-406H	A-15	DCM-18
MFO-210-M10	•	21	40	17.5	M10	16	LDGW120308	1	CSW-408H	A-15	DCM-18

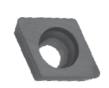
Примечание: Все фрезы поставляются без пластин.

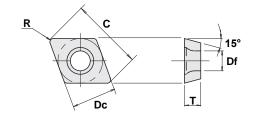
Номер по	ı	Размеры, мм	1	Класс точности	Сплавы с покрытием	Керметы
каталогу	Α	В	Т		JC8003	CX75
LDGW120308	9.525	12.7	3.18	G	•	•





Cepuя RHOMBIC DIEMASTER Тип MXD

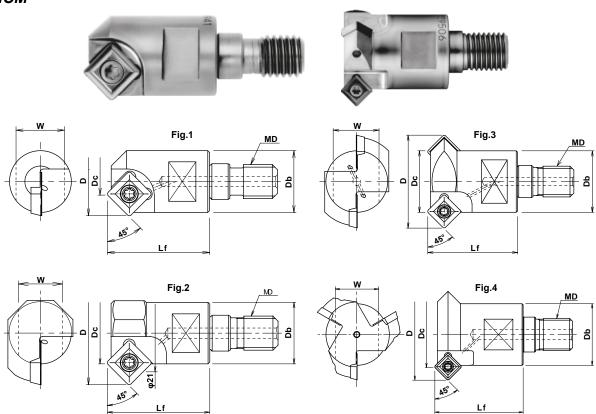


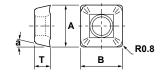


Номер по	Наличие на складе		Рази	иеры	, мм		Рис.	Усилие	П=00=000	Q	Компл	пектующ	ие
каталогу	Par E	D	R	D1	L	MD	РИС.	зажима Нм	Пластины	Q	Винт	Ключ	Прижим
MXD-2016-M8	•	16	0.5, 1.0	15.4	23	M8	1	16	XDHW0206-05 XDHW0206-10	2	CSW-2547	A-07	-
MXD-3020-M10	•	20	0.5, 1.0	17.8	30	M10	1	16	XDHW0206-05 XDHW0206-10	3	CSW-2547	A-07	-
MXD-3025-M12	•	25	0.5, 1.0	20.8	35	M12	1	20	XDHW0206-05 XDHW0206-10	3	CSW-2547	A-07	-
MXD-3035-M16	•	35	1.0	28.8	43	M16	2	25	XDHW0310-10	3	CSW-3575	A-15	DCM-18
MXD-4042-M16	•	42	1.0	28.8	43	M16	2	25	XDHW0310-10	4	CSW-3575	A-15	DCM-18

Примечание: Все фрезы поставляются без пластин.

Номер по			Размер	оы, мм		Сп	лавы с покрытием	1
каталогу	Dc	Т	С	R	Df	JC8003	JC8015	JC5040
XDHW0206-05	6.5	2.38	10.589	0.5	2.8	•	•	
XDHW0206-10	6.5	2.38	9.846	1.0	2.9	•	•	•
XDHW0310-10	10	3.97	15.948	1.0	4	•	•	•




Cepuя CHAMFER CUTTERS Tun MCM

Номер по	Наличие на складе		диметр при тке фаски		Раз	мері	ы, мм	1	Рис.	Усилие зажима	Пластины	O	Комплект	ующие
каталогу	Hay S	Прямая фаска	Обратная фаска	D	Dc	Lf	Db	MD		Нм			Винт	Ключ
MCM-0919-M10	•	8.5~19.6	-	20.2	8	30	18.2	M10	1	16		1		
MCM-1929-M10	•	18.5~29.6	21~29.6	30.2	18	30	18	M10	2	16	IM-SP32GS	1	CCW 407	A 45
MCM-2535-M12	•	24.5~35.6	26~35.6	36.2	24	35	24	M12	3	20	IIVI-SP32GS	2	CSW-407	A-15
MCM-3343-M16	•	32.5~43	33~43	44.2	32	43	30	M16	4	25		3		

Примечание: Все фрезы поставляются без пластин.

Номер по		Pa	змеры,	мм		Спл	авы с PVD покрыи	ЭМ
каталогу	Α	В	Т	R	а	JC5015	JC5030	JC5040
IM-SP32GS	9.52	9.52	3.18	0.8	14°	•	•	•

Тип МСМ

Рекомендации по выбору режимов резания для серий MCM и MSN

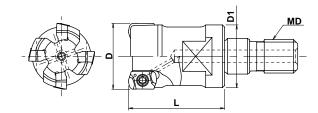
						Номер по	каталогу			
Обрабатываемый	Сплав	Тип		MCM-09	19-M10			MCM-19	29-M10	
материал	0.0.02	обработки		1 3	уб			1 3	уб	
		·	Vс (м/мин)	n (мин ⁻¹)	fz (мм/t)	Vf (мм/мин)	Vс (м/мин)	n (мин ⁻¹)	fz (мм/t)	Vf (мм/мин)
Углеродистые и	JC5030	Снятие фаски	100	1,680	0.3	500	100	1,100	0.3	330
легированные стали (S-C, SCM)		Цекование	100	1,680	0.3	500	100	1,100	0.3	330
(S-C, SCW) до 250HB	JC5040	Фрез. паза	-	-	-	-	-	-	-	-
Штамповые стали	JC5030	Снятие фаски	80	1,340	0.3	400	80	880	0.3	270
(SKD)	JC5030 JC5040	Цекование	80	1,340	0.3	400	80	880	0.3	270
до 255НВ	JC5040	Фрез. паза	-	-	-	-	ı	1	-	-
Чугуны	JC5015	Снятие фаски	90	1,510	0.3	460	90	990	0.3	300
(GG)	JC5015 JC5030	Цекование	90	1,510	0.3	460	90	990	0.3	300
150HB	303030	Фрез. паза	-	-	-	-	-	-	-	-
Высокопрочные	ICE015	Снятие фаски	75	1,260	0.3	380	75	820	0.3	250
чугуны (GGG)	JC5015 -	Цекование	75	1,260	0.3	380	75	820	0.3	250
до 220НВ	JC3030	Фрез. паза	-	-	-	-	-	-	-	-

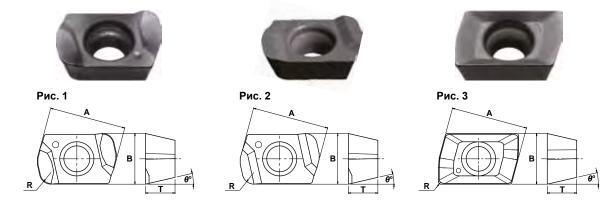
						Номер по	каталогу				
		Тип		MCM-25	35-M12			MCM-33	43-M13		
Обрабатываемый	Сплав	обработки		2 3	уба		3 зуба				
материал			Vс (м/мин)	n (мин ⁻¹)	fz (мм/t)	Vf (мм/мин)	Vс (м/мин)	n (мин ⁻¹)	fz (мм/t)	Vf (мм/мин)	
Углеродистые и	JC5030	Снятие фаски	100	910	0.3	550	100	760	0.3	680	
легированные стали (S-C, SCM)	JC5040	Цекование	125	1,130	0.3	680	125	950	0.3	850	
до 250НВ	JC5040	Фрез. паза	100	910	0.1	180	100	760	0.1	230	
Штамповые стали	ICE030	Снятие фаски	80	730	0.3	440	80	610	0.3	550	
(SKD)	JC5030 JC5040	Цекование	100	910	0.3	550	100	760	0.3	680	
до 255НВ	JC5040	Фрез. паза	80	730	0.1	150	80	610	0.1	180	
Чугуны	ICE01E	Снятие фаски	90	820	0.3	500	90	680	0.3	610	
(GG) 150HB	JC5015	Цекование	100	1,000	0.3	600	100	760	0.3	680	
130115	JC5030	Фрез. паза	90	820	0.1	170	90	680	0.1	200	
Высокопрочные	ICE01E	Снятие фаски	75	680	0.3	410	75	570	0.3	510	
чугуны (GGG)	JC5015 -	Цекование	90	820	0.3	490	90	680	0.3	610	
до 220НВ		Фрез. паза	75	680	0.1	140	75	570	0.1	170	

Vc = скорость резания, n = частота вращения шпинделя, fz = подача на зуб, Vf = минутная подача

Примечание:

- 1. Скорость резания зависит от диметра фаски.
- 2. В случае, если фаска более 3 мм следует понизить минутную подачу.




Cepuя QM MILL Tuп MPM

Номер по	наличие на складе		Размеј	оы, мм		Усилие	Пластины	Q	Комплекту	и ющие
каталогу	Наличие на складе	D	D1	L	MD	зажима Нм	ПЛАСТИНЫ	Q	Винт	Ключ
MPM-2010-M6	•	10	9.5	18	M6	8		2		
MPM-2011-M6	•	11	9.7	18	M6	8		2		
MPM-3012-M6	•	12	11.2	20	M6	8		3		
MPM-3013-M6	•	13	11.5	20	M6	8		3		
MPM-4016-M8	•	16	15	23	M8	16	EOMT060210ZER	4		
MPM-4017-M8	•	17	15	23	M8	16	EOMW060210ZER	4	DSW-1838H	A-06
MPM-5020-M10	•	20	19	30	M10	16	ZOMT06020*ZER	5		
MPM-5021-M10	•	21	19	30	M10	16		5		
MPM-6025-M12	•	25	23.6	35	M12	20		6		
MPM-7030-M16	•	30	29	43	M16	25	5	7		
MPM-8032-M16	•	32	29	43	M16	25		8		

Примечание: Все фрезы поставляются без пластин.

Тип	Номер по каталогу		Pa	змеры, і	мм		Рис.	Сплав с PVD) покрытием
	Ka lasioi y	Α	В	Т	R	θ°		JC5118	JC8050
Увеличенная подача	EOMT060210ZER	6.5	4.3	2.5	1.0	13°	1	•	•
Увеличенная подача при неблагоприятных условиях резания	EOMW060210ZER	6.5	4.3	2.5	1.0	13°	2	•	•
	ZOMT060202ZER	6.5	4.3	2.5	0.2	13°	3	•	•
Пластины	ZOMT060204ZER	6.5	4.3	2.5	0.4	13°	3	•	•
	ZOMT060208ZER	6.5	4.3	2.5	0.8	13°	3	•	•

Рекомендации по выбору режимов резания для фрезерных головок серий MPM и MSN с пластинами серий EOMT/EOMW

							Д	иаметр	инстр	умента,	мм					
Обрабатываемый	Сплав			10 / 11					12 / 13	-				16 / 17		
материал	Olifiab			2 зуба					3 зуба					4 зуба		
		L (мм)	Ар (мм)	Ае (мм)	N (мин ⁻¹)	Vf (тм/мин)	L (мм)	Ар (мм)	Ае (мм)	N (мин ⁻¹)	Vf мм/мин)	L (мм)	Ар (мм)	Ае (мм)	N (мин ⁻¹)	Vf (мм/мин)
Углеродистые		50	0.30	~6	3,820	5,340	60	0.30	~8	3,180	6,680	80	0.40	~12	2,390	8,600
стали (С50,С55) до 250HB	JC5118 (JC8050)	75	0.25	~6	3,400	4,080	80	0.25	~8	2,860	5,150	120	0.30	~12	2,150	6,880
до 20011В	(,	100	0.20	~5	3,180	3,180	110	0.20	~7	2,540	3,810	160	0.25	~12	1,910	5,350
Штамповые стали		50	0.30	~6	3,500	4,900	60	0.30	~8	2,920	6,130	80	0.40	~12	2,190	7,880
(1.2344,1.2379)	JC5118 (JC8050)	75	0.20	~6	3,120	3,740	80	0.20	~8	2,630	4,730	120	0.30	~12	1,970	6,300
до 255НВ	,	100	0.15	~5	2,920	2,920	110	0.15	~7	2,340	3,510	160	0.25	~12	1,750	4,900
Штамповые стали		50	0.30	~6	3,500	4,900	60	0.30	~8	2,920	6,130	80	0.40	~12	2,190	7,880
(1.2311,P20)	JC8050 (JC5118)	75	0.25	~6	3,120	3,740	80	0.25	~8	2,630	4,730	120	0.30	~12	1,970	6,300
30-43 HRC	ные	100	0.20	~5	2,920	2,920	110	0.20	~7	2,340	3,510	160	0.25	~12	1,750	4,900
Закаленные штамповые		50	0.20	~6	2,870	3,440	60	0.30	~8	2,390	4,300	80	0.30	~12	1,790	5,010
стали (1.2311,Р20)	JC5118	75	0.15	~6	2,560	2,560	80	0.15	~8	2,150	3,220	120	0.20	~12	1,610	3,860
40-50 HRC		100	-	-	-	-	110	-	-	-	-	160	-	-	-	-
Серые и высокопрочные		50	0.30	~6	4,780	6,690	60	0.30	~8	3,980	8,360	80	0.40	~12	2,980	10,730
чугуны (ĠG,GGG)	JC5118	75	0.25	~6	4,300	5,160	80	0.25	~8	3,580	6,440	120	0.35	~12	2,680	8,580
до 300НВ		100	0.20	~6	3,980	3,980	110	0.20	~8	3,180	4,770	160	0.30	~12	2,380	6,660
Нержавеющие стали		50	0.30	~6	3,820	5,340	60	0.30	~8	3,180	6,680	80	0.40	~12	2,390	8,600
(SUS304)	JC8050	75	0.20	~6	3,400	4,080	80	0.20	~8	2,860	5,150	120	0.30	~12	2,150	6,880
до 255НВ		100	0.15	~5	3,180	3,180	110	0.15	~7	2,540	3,810	160	0.25	~12	1,910	5,350
Титановые сплавы		50	0.30	~6	1,910	1,910	60	0.30	~8	1,590	2,380	80	0.30	~12	1,190	2,380
(Ti-6Al-4V)	JC8050	75	0.20	~6	1,720	1,380	80	0.20	~8	1,430	1,720	120	0.25	~12	1,070	1,720
		100	0.15	~5	1,590	950	110	0.15	~7	1,270	1,140	160	0.20	~12	950	1,140
Жаропрочные сплавы	10=445	50	0.30	~6	950	760	60	0.30	~8	800	960	80	0.30	~12	600	960
(INCO718)	JC5118 (JC8050)	75	0.20	~6	850	510	80	0.20	~8	720	650	120	0.25	~12	540	650
	(INCO718) (JC8050)	100	0.15	~5	750	380	110	0.15	~7	640	480	160	0.20	~12	480	480

L = вылет инструмента, Ap = глубина фрезерования, N = частота вращения шпинделя, F = минутная подача

Примечание:

- 1. Режимы резания должны быть скорректированы в зависимости от типа станка и условий обработки.
 2. В случае возникновения вибрации необходимо уменьшить глубину резания Ар или
- В случае возникновения виорации неооходимо уменьшить глуоину резания Ар или частоту вращения шпинделя N, а подачу на зуб гz оставить на прежнем уровне.
 Если у станка недостаточно мощности, необходимо уменьшить глубину резания Ар или частоту вращения шпинделя N и минутную подачу Vf.
 Используйте воздушное охлаждение.
 Если обрабатываемый материал имеет твердость 50-55HRC, следует понизить на 30% глубину резания Ар, частоту вращения шпинделя N и подачу на зуб fz.

Рекомендации по выбору режимов резания для фрезерных головок серий MPM и MSN с пластинами серий EOMT/EOMW

					Ди	аметр инс	трумента,	ММ			
Обрабатываемый	0			20 / 21					25		
материал	Сплав	Table Tabl	6 зубьев								
		L (мм)		MM (MM) (MM) (MM) (MM) (MM) (MM) (MM)	Vf (мм/мин)						
Углеродистые	107440	70	0.40	~14	1,910	8,600	90	0.40	~18	1,530	8,260
стали (С50,С55)	JC5118 (JC8050)	120	0.30	~14	1,720	6,880	140	0.30	~18	1,380	6,620
до 250НВ	(30000)	190	0.25	~14	1,530	5,350	210	0.25	~18	1,220	5,120
Штамповые	105440	70	0.40	~14	1,750	7,880	90	0.40	~18	1,400	7,560
стали (1.2344,1.2379)	JC5118 (JC8050)	120	0.30	~14	1,580	6,300	140	0.30	~18	1,260	6,050
до 255НВ	(300000)	190	0.25	~14	1,400	4,900	210	0.25	~18	1,120	4,700
Штамповые	100050	70	0.40	~14	1,750	7,880	90	0.40	~18	1,400	7,560
стали (1.2311,P20)	JC8050	120	0.30	~14	1,580	6,300	140	0.30	~18	1,260	6,050
30-43 HRC	`30-43 HRC'	190	0.25	~14	1,400	4,900	210	0.25	~18	1,120	4,700
Закаленные		70	0.30	~14	1,430	5,010	90	0.30	~18	1,140	4,790
штамповые стали (1.2311,P20)	JC5118	120	0.20	~14	1,290	3,860	140	0.20	~18	1,030	3,710
40-50 HRĆ ´		190	-	ı	-	-	210	-	~18	ı	ı
Серые и		70	0.40	~14	2,390	10,730	90	0.40	~18	1,910	10,310
высокопрочные чугуны (GG.GGG)	JC5118	120	0.35	~14	2,150	8,580	140	0.35	~18	1,720	8,260
чугуны (ĠG,GGG) до 300HB		190	0.30	~14	1,910	6,660	210	0.30	~18	1,530	6,430
Нержавеющие		70	0.40	~14	1,910	8,600	90	0.40	~18	1,530	8,260
стали (SUS304)	JC8050	120	0.30	~14	1,720	6,880	140	0.30	~18	1,380	6,620
до 255НВ		190	0.25	~14	1,530	5,350	210	0.25	~18	1,220	5,120
Титановые		70	0.40	~14	950	2,380	90	0.30	~18	760	2,280
сплавы	JC8050	120	0.30	~14	860	1,720	140	0.25	~18	680	1,630
(Ti-6Al-4V)		190	0.25	~14	760	1,140	210	0.20	~18	610	1,100
Жаропрочные	JC5118	70	0.40	~14	480	960	90	0.30	~18	380	910
сплавы		120	0.30	~14	430	650	140	0.25	~18	340	610
(INCO718)	сплавы (JC8050)	190	0.25	~14	380	480	210	0.20	~18	300	450

					Ди	аметр инс	трумента,	ММ			
055. · · · · ·				30					32		
Обрабатываемый материал	Сплав			7 зубьев					8 зубьев		
		L (мм)	Ар (мм)	Ае (мм)	N (мин ⁻¹)	Vf (мм/мин)	L (MM)	Ар (мм)	Ае (мм)	N (мин ⁻¹)	Vf (мм/мин)
Углеродистые	105440	100	0.40	~22	1,270	8,000	100	0.40	~24	1,190	8,600
стали (С50,С55)	JC5118 (JC8050)	150	0.30	~22	1,140	6,380	150	0.30	~24	1,070	6,880
до 250НВ	(30000)	210	0.25	~22	1,020	5,000	210	0.25	~24	950	5,350
Штамповые	105440	100	0.40	~22	1,170	7,370	100	0.40	~24	1,090	7,880
стали (1.2344,1.2379)	JC5118 (JC8050)	150	0.30	~22	1,050	5,880	150	0.30	~24	980	6,300
до 255НВ	(30000)	210	0.25	~22	940	4,610	210	0.25	~24	870	4,900
Штамповые	100050	100	0.40	~22	1,170	7,370	100	0.40	~24	1,090	7,880
стали (1.2311,P20)	JC8050	150	0.30	~22	1,050	5,880	150	0.30	~24	980	6,300
30-43 HRC	0-43 HRC	210	0.25	~22	940	4,610	210	0.25	~24	870	4,900
Закаленные		100	0.30	~22	950	4,660	100	0.30	~24	900	5,010
штамповые стали (1.2311,P20)	JC5118	150	0.20	~22	850	3,570	150	0.20	~24	810	3,860
40-50 HRĆ ´		210	0.15	~22	760	2,660	210	0.15	~24	720	2,880
Серые и		100	0.40	~22	1,590	10,020	100	0.40	~24	1,490	10,730
высокопрочные чугуны (GG,GGG)	JC5118	150	0.35	~22	1,430	8,010	150	0.35	~24	1,340	8,580
до 300НВ		210	0.30	~22	1,270	6,220	210	0.30	~24	1,190	6,660
Нержавеющие стали		100	0.40	~22	1,270	8,000	100	0.40	~24	1,190	8,600
(SUS304)	JC8050	150	0.30	~22	1,140	6,380	150	0.30	~24	1,070	6,880
до 255HB		210	0.25	~22	1,020	5,000	210	0.25	~24	950	5,350
Титановые		100	0.30	~22	640	2,240	100	0.30	~24	600	2,380
сплавы	JC8050	150	0.25	~22	580	1,620	150	0.25	~24	540	1,720
(Ti-6Al-4V)	00000	210	0.20	~22	510	1,070	210	0.20	~24	480	1,140
Жаропрочные	JC5118	100	0.30	~22	320	900	100	0.30	~24	300	960
сплавы	(JC8050)	150	0.25	~22	290	610	150	0.25	~24	270	650
(INCO718)	(55550)	210	0.20	~22	260	460	210	0.20	~24	240	480

L = вылет инструмента, Ap = глубина фрезерования, N = частота вращения шпинделя, F = минутная подача

^{**} См. примечание на странице А-166

Рекомендации по выбору режимов резания для фрезерных головок серий MPM и MSN с пластинами серий ZOMT

							Д	иаметр	инстру	умента,	мм					
Обрабатываемый	Сплав			10 / 11					12 / 13					16 / 17	7	
материал	Olifiab			2 зуба					3 зуба					4 зуба		
		L (мм)	Ар (мм)	АрхАе (мм²)	N (мин ⁻¹)	Vf (мм/мин)	L (мм)	Ар (мм)	АрхАе (мм²)	N (мин ⁻¹)	Vf (мм/мин)	L (мм)	Ар (мм)	АрхАе (мм²)	N (мин ⁻¹)	Vf (мм/мин)
Углеродистые		50	~4.0	~6.0	5,090	810	60	~4.0	~8.0	4,240	1,020	80	~5.0	~10.0	3,180	1,020
стали (С50,С55)	JC5118 (JC8050)	75	~1.2	~1.8	4,580	640	80	~1.7	~2.6	3,820	800	120	~2.0	~3.0	2,860	800
до 250НВ		100	~0.5	~0.8	4,070	490	110	~0.6	~1.2	3,390	610	160	~0.7	~1.3	2,540	610
Штамповые		50	~4.0	~6.0	4,780	570	60	~4.0	~8.0	3,980	720	80	~5.0	~10.0	2,990	720
стали (1.2379)	JC5118 (JC8050)	75	~1.2	~1.8	4,300	430	80	~1.7	~2.6	3,580	540	120	~2.0	~3.0	2,690	540
до 255НВ	100	~0.5	~0.8	3,820	310	110	~0.6	~1.2	3,180	380	160	~0.7	~1.3	2,390	380	
Штамповые		50	~3.0	~4.0	3,820	460	60	~3.0	~4.5	3,180	570	80	~4.0	~6.0	2,390	570
стали (1.2311,P20)	JC8050 (JC5118)	75	~1.2	~1.6	3,440	340	80	~1.3	~1.8	2,860	430	120	~1.7	~2.2	2,150	430
30-43 HRC		100	~0.5	~0.8	3,060	240	110	~0.6	~1.0	2,540	300	160	~0.6	~1.1	1,910	300
Серые и высокопрочные		50	~4.0	~6.0	4,780	760	60	~4.0	~8.0	3,980	960	80	~5.0	~10.0	2,990	960
чугуны (GG,GGG)	JC5118	75	~1.2	~1.8	4,300	600	80	~1.7	~2.6	3,580	750	120	~2.0	~3.0	2,690	750
до 300НВ		100	~0.5	~0.8	3,980	480	110	~0.6	~1.2	3,180	570	160	~0.7	~1.3	2,390	570
Нержавеющие		50	~4.0	~6.0	4,780	570	60	~4.0	~8.0	3,980	720	80	~5.0	~10.0	2,990	720
стали (SUS304)	JC8050	75	~1.2	~1.8	4,300	430	80	~1.7	~2.6	3,580	540	120	~2.0	~3.0	2,690	540
до 255НВ		100	~0.5	~0.8	3,820	310	110	~0.6	~1.2	3,180	380	160	~0.7	~1.3	2,390	380

L = вылет инструмента, Ap = глубина фрезерования, N = частота вращения шпинделя, F = минутная подача

Примечание:

- 1. Режимы резания должны быть скорректированы в зависимости от типа станка и условий обработки.
 2. В случае возникновения вибрации необходимо уменьшить глубину резания Ар или
- с. о олучае возпикловения виорации неооходимо уменьшить глуоину резания Ар или частоту вращения шпинделя N, а подачу на зуб fz оставить на прежнем уровне.
 3. Если у станка недостаточно мощности, необходимо уменьшить глубину резания Ар или частоту вращения шпинделя N и минутную подачу Vf.
 4. Используйте воздушное охлаждение.

Рекомендации по выбору режимов резания для фрез серий MPM и MSN с пластинами серии ZOMT

					Ди	аметр инс	трумента,	мм					
Обрабатываемый	C			20 / 21					25				
материал	Сплав			5 зубьев					6 зубьев				
		L (мм)	Ар (мм)	АрхАе (мм²)	N (мин ⁻¹)	Vf (мм/мин)	L (мм)	Ар (мм)	АрхАе (мм²)	N (мин ⁻¹)	Vf (мм/мин)		
Углеродистые		70	~5.0	~30.0	2,550	1,020	90	~5.0	~40.0	2,040	980		
стали (C50,C55)	JC5118 (JC8050)	120	~4.0	~20.0	2,300	800	140	~4.0	~28.0	1,840	770		
до 250НВ	(3 2322)	190	~3.0	~12.0	2,040	610	210	~3.0	~18.0	1,630	590		
Штамповые		70	~5.0	~30.0	2,390	720	90	~5.0	~40.0	1,910	690		
стали (1 2344 1 2379)	JC5118 (JC8050)	120	~4.0	~20.0	2,150	540	140	~4.0	~28.0	1,720	520		
до 255НВ	1.2344,1.2379) (JC8050) до 255НВ Штамповые	190	~3.0	~12.0	1,910	380	210	~3.0	~18.0	1,530	370		
Штамповые		70	~4.0	~24.0	1,910	570	90	~4.0	~32.0	1,530	550		
стали (1.2311,P20)	JC8050 (JC5118)	120	~3.0	~15.0	1,720	430	140	~3.0	~21.0	1,380	410		
30-43 HRC	(====,	190	~2.0	~8.0	1,530	300	210	~2.0	~12.0	1,220	290		
Серые и		70	~5.0	~30.0	2,390	960	90	~5.0	~40.0	1,910	920		
высокопрочные чугуны (GG.GGG)	JC5118	JC5118	JC5118	120	~4.0	~20.0	2,150	750	140	~4.0	~28.0	1,720	720
нугуны (GG,GGG) до 300HB		190	~3.0	~12.0	1,910	570	210	~3.0	~18.0	1,530	550		
Нержавеющие		70	~5.0	~30.0	2,390	720	90	~5.0	~40.0	1,910	690		
стали (SUS304) J	JC8050	120	~4.0	~20.0	2,150	540	140	~4.0	~28.0	1,720	520		
до 255НВ		190	~3.0	~12.0	1,910	380	210	~3.0	~18.0	1,530	370		

					Ди	аметр инс	трумента,	мм				
Обрабатываемый	Сплав			30					32			
материал	Cillian		7 зубь	ев Ае<10	.0 (мм)		32 8 зубьев Ae<10.	.0 (мм)				
		L (мм)	Ар (мм)	АрхАе (мм²)	N (мин⁻¹)	Vf (мм/мин)				N (мин⁻¹)	Vf (мм/мин)	
Углеродистые		100	~5.0	~50.0	1,700	950	100	~5.0	~50.0	1,590	1,020	
стали (C50,C55)	JC5118 (JC8050)	150	~4.0	~36.0	1,530	750	150	~4.0	~38.0	1,430	800	
до 250НВ	, ,	210	~3.0	~24.0	1,360	570	210	~3.0	~26.0	1,270	610	
Штамповые		100	~5.0	~50.0	1,590	670	100	~5.0	~50.0	1,490	720	
стали (1.2344,1.2379)	JC5118 (JC8050)	150	~4.0	~36.0	1,430	500	150	~4.0	~38.0	1,340	540	
до 255НВ	до 255НВ	210	~3.0	~24.0	1,270	360	210	~3.0	~26.0	1,190	380	
Штамповые		100	~5.0	~45.0	1,270	530	100	~5.0	~47.0	1,190	570	
стали (1.2311,P20)	JC8050 (JC5118)	JC8050 (JC5118)	150	~4.0	~32.0	1,140	400	150	~4.0	~34.0	1,070	430
30-43 HRC	,	210	~3.0	~21.0	940	260	210	~3.0	~23.0	950	300	
Серые и		100	~5.0	~50.0	1,590	890	100	~5.0	~50.0	1,490	960	
высокопрочные чугуны (GG,GGG)	JC5118	150	~4.0	~36.0	1,430	700	150	~4.0	~38.0	1,340	750	
до 300НВ	угуны (СС,ССС)	210	~3.0	~24.0	1,270	530	210	~3.0	~26.0	1,190	570	
Нержавеющие стали	али 6304) JC8050	100	~5.0	~50.0	1,590	670	100	~5.0	~50.0	1,490	720	
(SUS304)		150	~4.0	~36.0	1,430	500	150	~4.0	~38.0	1,340	540	
до 255НВ		210	~3.0	~24.0	1,270	360	210	~3.0	~26.0	1,190	380	

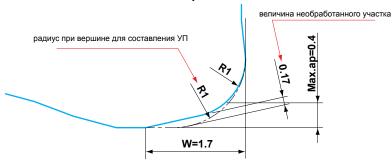
L = вылет инструмента, Ap = глубина фрезерования, N = частота вращения шпинделя, F = минутная подача

Примечание:

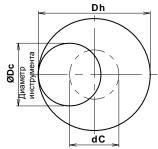
- 1. Режимы резания должны быть скорректированы в зависимости от типа станка и условий обработки.
 2. В случае возникновения вибрации необходимо уменьшить глубину резания Ар или
- за стучки воздужно воздужной посождужно уменьшить глубину резании до или частоту вращения шпинделя N, а подачу на зуб fz оставить на прежнем уровне.

 3. Если у станка недостаточно мощности, необходимо уменьшить глубину резания Ар или частоту вращения шпинделя N и минутную подачу Vf.

 4. Используйте воздушное охлаждение.



QM Mill Тип МРМ


Рекомендации для составления управляющей программы при обоработке фрезерными головками с пластинами серии **EOMT/EOMW**

Рекомендации по выбору режимов резания при профильном фрезеровании пластинами серии EOMT/EOMW

Врезание

Винтовая интерполяция

Вычисление траектории движения

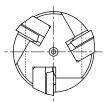
ØDc ØDh

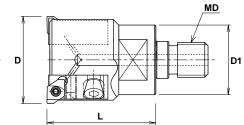
Ø обрабатываемого Ø траектории.

• Глубина резания за один оборот не должна превышать величину глубины резания Ар.
• При направлении обработки вниз по оси Z, фреза должна вращаться против часовой стрелки.

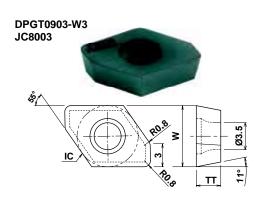
Ø инструмента. отверстия.

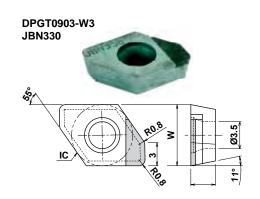
- При фрезеровании с врезанием и винтовой интерполяцией необходимо уменьшить значение минутной подачи на 30% и более, по
- сравнению с рекомендованным значением в стандартной таблице каталога.
 При фрезеровании с осевой подачей необходимо уменьшить минутную подачу на 50% и более от рекомендованного значения.
 При фрезеровании с осевой подачей может возникнуть длинная сливная стружка, поэтому необходимо обеспечить безопасные условия работы и соблюдение техники безопасности.


	ø	Эффективный	Макс.	Фрезеров	ание с врезанием	Фрезерование интерпол	с винтовой Іяцией
Номер по каталогу	инструмента I (мм)	рабочий Ø D1 (мм)	глубина фрезерования Ар (мм)	Макс. угол врезания: Ө°	Общая длина резания при макс. Ар: L (мм)	Мин. Ø обрабаты- ваемого отвестия.: Dh(мм)	Макс. Ø обрабаты- ваемого отвестия.: Dh(мм)
MPM-2010-M6	10	6.6	0.3	2°18'	7.5	15	18
MPM-2011-M6	11	7.6	0.3	1°54'	9	17	20
MPM-3012-M6	12	8.5	0.3	1°36′	10.7	19	22
MPM-3013-M6	13	9.5	0.3	1°24'	12.3	21	24
MPM-4016-M8	16	12.5	0.4	1°	22.9	27	30
MPM-4017-M8	17	13.5	0.4	0°54'	25.5	29	32
MPM-5020-M10	20	16.5	0.4	0°45'	30.6	35	38
MPM-5021-M10	21	17.5	0.4	0°42'	32.7	37	40
MPM-6025-M12	25	21.5	0.4	0°30'	45.8	45	48
MPM-7030-M16	30	26.5	0.4	0°27'	50.9	55	58
MPM-8032-M16	32	28.5	0.4	0°24'	57.3	59	62



Серия BACK и FORTH CUTTER Тип MPF





									Комплектующие			
Номер по каталогу	Наличие на складе	P	asimopbi, min		Усилие зажима Нм	Пластины	Q	Пластины Винт	Пластины Ключ	Резцовая вставка: ы регулировочный винт, крепежный		
		D	L	D1	MD				Бинт	POILD	болт, ключ	
MPF-2030-M16	•	30	50	28	M16	25		2			SDGPR09CA-PFC RSW-05008 HCS5-10	
MPF-2033-M16	•	33	50	32	M16	25	DPGT0903-W3	2	DSW-307H	A-10SD		
MPF-3040-M16	•	40	50	32	M16	25		3			LW-040	

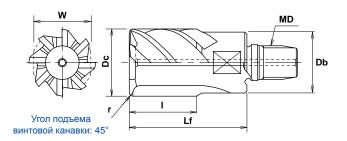
Примечание: Все фрезы поставляются без пластин.

Пластины

Номер по	Pa	змеры, і	мм	Класс точности	Сплавы с покрытием	КНБ
каталогу	IC T W		Міасс Іочности	ЈС8003 (чистовая и получистовая)	ЈВN330 (суперфиниш)	
DPGT0903-W3	7.94	3.18	7.94	G	•	•

Резцовые вставки и комплектующие

Резцовая вставка	Регулировочный винт	Винт резцовой вставки	Ключ резцовой вставки
SDGPR09CA-PFC	RSW-05008	HCS5-10	LW-040



Серия S-HEAD


Tun SMSA

- Многозубые твердосплавные фрезерные головки.
- Для обработки всех видов сталей и труднообрабатываемых материалов, таких, как например, жаропрочные сплавы и сплавы на основе Ti.
- Для чистовой обработки лопаток турбин, штампов и прессформ.

Номер по	Наличие на складе	Сплав				Pa	азмеры, м	им			
каталогу	Наличие на складе	Cilliab	Dc	r	- 1	Lf	Db	MD	Усилие зажима Нм	W	Кол-во канавок
SMSA-8160R05-M8	•		16	0.5	16	30	15	M8	16	14	8
SMSA-8160R10-M8	•	JC8015	16	1	16	30	15	M8	16	14	8
SMSA-6160R20-M8	•	300013	16	2	16	30	15	M8	16	14	6
SMSA-6160R30-M8	•		16	3	16	30	15	M8	16	14	6
SMSA-8200R05-M10	•		20	0.5	20	35	19	M10	16	17	8
SMSA-8200R10-M10	•	JC8015	20	1	20	35	19	M10	16	17	8
SMSA-8200R20-M10	•	JC6015	20	2	20	35	19	M10	16	17	8
SMSA-6200R30-M10	•		20	3	20	35	19	M10	16	17	6
SMSA-8250R10-M12	•		25	1	25	43	24	M12	20	22	8
SMSA-8250R20-M12	•	JC8015	25	2	25	43	24	M12	20	22	8
SMSA-6250R30-M12	•		25	3	25	43	24	M12	20	22	6
SMSA-8300R10-M16	•		30	1	30	56	29	M16	25	27	8
SMSA-8300R20-M16	•	JC8015	30	2	30	56	29	M16	25	27	8
SMSA-6300R30-M16	•		30	3	30	56	29	M16	25	27	6
SMSA-8320R10-M16	•		32	1	32	56	30	M16	25	27	8
SMSA-8320R20-M16	•	JC8015	32	2	32	56	30	M16	25	27	8
SMSA-6320R30-M16	•		32	3	32	56	30	M16	25	27	6

Рекомендации по выбору режимов резания для фрезерных головок серии SMSA

Обработка уступов

					Диа	метр инс	грумента,	мм				
		16			20			25			30 / 32	
Обрабатываемый материал	ap ap ≤ 0.03Dc		Ae ae ≤ Dc ap ap ≤ 0.03Dc			ae ≤ Dc ap ap ≤ 0.03Dc			Ae Ae ≤ Dc Ap ap ≤ 0.03Dc			
	L (мм)	n (мм⁻¹)	Vf (тм/мин)	L (мм)	n (мм⁻¹)	Vf (тм/мин)	L (мм)	n (мм⁻¹)	Vf (тм/мин)	L (мм)	n (мм⁻¹)	Vf (тм/мин)
Углеродистые и легированные	70	3,800	900	75	3,200	800	100	2,500	600	110	2,100	500
стали (C50,1.7223)	110	3,400	700	125	2,700	550	150	2,300	500	160	1,900	420
до 250НВ	150	3,200	600	175	2,500	500	200	2,000	400	210	1,800	370
Нержавеющие	70	3,800	900	75	3,200	800	100	2,500	600	110	2,100	500
стали (SUS304)	110	3,400	700	125	2,700	550	150	2,300	500	160	1,900	420
до 255НВ	150	3,200	600	175	2,500	500	200	2,000	400	210	1,800	370
Штамповые	70	2,800	600	75	2,400	600	100	1,900	500	110	1,600	400
стали (1.2311,P20)	110	2,500	500	125	2,000	400	150	1,700	400	160	1,500	320
30-43 HRC	150	2,400	450	175	1,900	350	200	1,500	300	210	1,400	280
	70	800	200	75	600	150	100	500	120	110	400	100
Жаропрочные сплавы (Inco718)	110	700	150	125	550	120	150	450	100	160	380	90
35-43HRC	150	600	120	175	500	100	200	400	80	210	350	80
Титановые	70	1,900	450	75	1,600	400	100	1,300	300	110	1,100	260
сплавы (Ti-6AL-4V)	110	1,700	350	125	1,400	300	150	1,100	250	160	1,000	220
`35-43HRC	150	1,600	300	175	1,300	250	200	1,000	200	210	900	180
Алюминиевы	70	6,000	1,300	75	5,000	1,200	100	4,000	1,000	110	3,200	800
сплавы	110	5,000	1,100	125	4,000	900	150	3,500	800	160	2,900	650
(A5052, A7075) 50-110HB	150	4,500	1,000	175	3,500	700	200	3,000	600	210	2,700	550

Примечание:

- 1. В случае чистовой обработки стенок периферией фрезы, с целью повышения эффективности обработки, рекомендуем увеличить Ар и уменьшить Ае, что оптимизирует теплоотвод из зоны резания. 2. В случае чистовой обработки плоскости торцем фрезы, с целью повышения эффективности обработки,
- рекомендуем обрабатывать плоскость радиусной периферией с повышенной подачей и уменьшить Ар.

 3. Рекомендуется использование внутреннего подвода СОЖ с целью снижения температуры обработки и избежания проблем с наростообразованием на режущей кромке.

При использовании фрезерных головок диаметром свыше 16мм, рекомендуем твердосплавный корпус серии MSN диаметром (D1) на 1мм (или более) меньше диаметра (Dc) фрезерной головки. При неправильном выборе есть вероятность поломки твердосплавного корпуса фрезы.

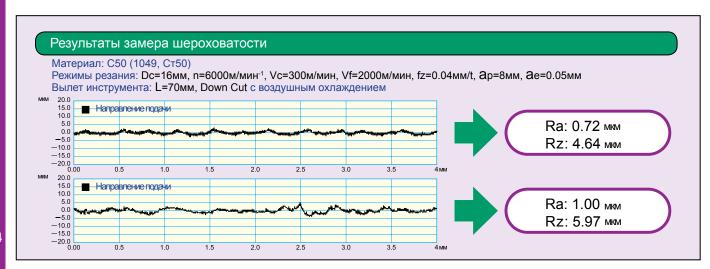
Рекомендованно использование воздушного охлаждения или СОЖ для лучшей эвакуации стружки из зоны резания.

В случае финишных операций, при использовании головки серий Mirror Ball, Mirror Radius и т.д., снижается риск поломки твердосплавного корпуса.

Зазор должен быть более 0,5 мм.

Рекомендации по выбору режимов резания для фрезерных головок серии SMSA

Обработка уступов


					Диа	метр инс	трумента,	мм				
		16			20			25			30 / 32	
	ae ≤ Dc ap ≤ 0.03Dc		$\begin{array}{c c} & ae \\ \hline & ap \\ & ap \\ \hline & ap \\ & ap$		ae ≤ Dc ap ≤ 0.03Dc			ae de				
	L (мм)	n (мм ⁻¹)	Vf (тм/мин)	L (мм)	n (мм ⁻¹)	Vf (тм/мин)	L (мм)	n (мм ⁻¹)	Vf (тм/мин)	L (мм)	n (мм ⁻¹)	Vf (тм/мин)
Углеродистые и	70	3,800	3,000	75	3,200	2,600	100	2,500	2,000	110	2,100	1,700
легированные стали (С50,1.7223)	110	3,400	2,700	125	2,700	2,200	150	2,300	1,800	160	1,900	1,500
до 250НВ	150	3,200	2,600	175	2,500	2,000	200	2,000	1,600	210	1,800	1,400
Нержавеющие	70	3,800	3,000	75	3,200	2,600	100	2,500	2,000	110	2,100	1,700
стали (SUS304)	110	3,400	2,700	125	2,700	2,200	150	2,300	1,800	160	1,900	1,500
до 255НВ	150	3,200	2,600	175	2,500	2,000	200	2,000	1,600	210	1,800	1,400
Штамповые	70	2,800	2,200	75	2,400	1,900	100	1,900	1,500	110	1,600	1,300
стали (1.2311,P20)	110	2,500	2,000	125	2,000	1,600	150	1,700	1,350	160	1,500	1,200
30-43 HRC	150	2,400	1,900	175	1,900	1,500	200	1,500	1,200	210	1,400	1,100
Жаропрочные	70	800	650	75	600	500	100	500	400	110	400	320
сплавы (Inco718) 35-43HRC	110	700	550	125	550	450	150	450	360	160	380	300
	150	600	500	175	500	400	200	400	320	210	360	280
Титановые	70	1,900	1,500	75	1,600	1,300	100	1,300	1,000	110	1,100	900
сплавы (Ti-6AL-4V)	110	1,700	1,400	125	1,400	1,100	150	1,100	900	160	1,000	800
35-43HRC	150	1,600	1,300	175	1,300	1,000	200	1,000	800	210	900	700
Алюминиевы	70	5,700	4,600	75	4,800	3,800	100	3,800	3,000	110	3,200	2,600
сплавы (A5052, A7075)	110	5,100	4,100	125	4,100	3,200	150	3,400	2,700	160	2,900	2,300
50-110HB	150	4,800	3,800	175	3,800	3,000	200	3,100	2,500	210	2,700	2,100

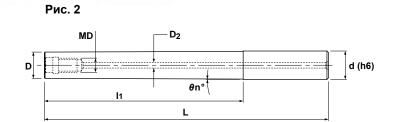
Примечание:

- 1. В случае чистовой обработки стенок периферией фрезы, с целью повышения эффективности обработки,
- рекомендуем увеличить Ар и уменьшить Ае, что оптимизирует теплоотвод из зоны резания.

 2. В случае чистовой обработки плоскости торцем фрезы, с целью повышения эффективности обработки, рекомендуем обрабатывать плоскость радиусной периферией с повышенной подачей и уменьшить Ар.

 3. Рекомендуется использование внутреннего подвода СОЖ с целью снижения температуры обработки и избежания
- проблем с наростообразованием на режущей кромке.

Оправка твердосплавная с цилиндрическим хвостовиком

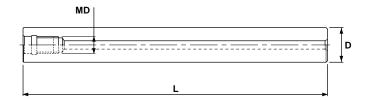

(с отверстием для подачи СОЖ)

Tun MSN

Рис. 1

MD d (h6)

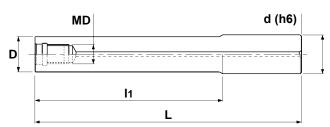
Номер по	чие			Размерь	ol, MM			Bec	D.	
каталогу	Наличие на складе	D	I1	L	d	θn°	MD	КГ	D ₂	Рис.
MSN-M6-12-S10C	•	9.7	12	60	10	-	M6	0.06	3	1
MSN-M6-30-S10C	•	9.7	30	80	10	-	M6	0.07	3	1
MSN-M6-50-S10C	•	9.7	50	100	10	-	M6	0.09	3	1
MSN-M6-80-S10C	•	9.7	80	130	10	-	M6	0.12	3	1
MSN-M6-15-S12C	•	11.5	15	60	12	-	M6	0.08	3	1
MSN-M6-30-S12C	•	11.5	30	80	12	-	M6	0.11	3	1
MSN-M6-50-S12C	•	11.5	50	100	12	-	M6	0.13	3	1
MSN-M6-80-S12C	•	11.5	80	130	12	-	M6	0.18	3	1
MSN-M8-20-S16C	•	15.5	20	75	16	-	M8	0.17	4	1
MSN-M8-40-S16C	•	15.5	40	95	16	-	M8	0.22	4	1
MSN-M8-80-S16C	•	15.5	80	135	16	-	M8	0.32	4	1
MSN-M8-120-S16C	•	15.5	120	175	16	-	M8	0.42	4	1
MSN-M10-20-S20C	•	19.5	20	80	20	-	M10	0.29	6	1
MSN-M10-40-S20C	•	19.5	40	100	20	-	M10	0.39	4	1
MSN-M10-40T-S20C	•	19.5	40	100	20	0°43'	M10	0.39	4	2
MSN-M10-70-S20C	•	19.5	70	130	20	-	M10	0.50	4	1
MSN-M10-90-S20C	•	19.5	90	150	20	-	M10	0.60	4	1
MSN-M10-90T-S20C	•	19.5	90	150	20	0°19'	M10	0.58	4	2
MSN-M10-140-S20C	•	19.5	140	200	20		M10	0.80	4	1
MSN-M10-140T-S20C	•	19.5	140	200	20	0°12'	M10	0.77	4	2
MSN-M12-25-S25C	•	24	25	90	25	-	M12	0.53	6	1
MSN-M12-55-S25C	•	24	55	120	25	-	M12	0.72	6	1
MSN-M12-105-S25C	•	24	105	170	25	-	M12	1.03	6	1
MSN-M12-155-S25C	•	24	155	220	25	-	M12	1.34	6	1
MSN-M16-25-S32C	•	29	25	90	32	-	M16	0.85	8	1
MSN-M16-55-S32C	•	29	55	120	32	-	M16	1.13	8	1
MSN-M16-105-S32C	•	29	105	170	32	-	M16	1.59	8	1
MSN-M16-155-S32C	•	29	155	220	32	-	M16	2.04	8	1
MSN-M16-195-S32C	•	29	195	260	32	-	M16	2.40	8	1
MSN-M16-225-S32C	•	29	225	290	32	-	M16	2.57	8	1
MSN-M16-245-S32C	•	29	245	310	32	-	M16	2.74	8	1
MSN-M16-295-S32C	•	29	295	360	32	-	M16	3.17	8	1



Оправка твердосплавная с цилиндрическим хвостовиком

(с отверстием для подачи СОЖ)

Тип MSN - прямой хвостовик


Номер по	чие яде		Размеры, мм		Bec	
каталогу	Наличие на складе	D	L	MD	КГ	D ₂
MSN-M6-67S-S9.8C	•	9.8	67	M6	0.06	3
MSN-M6-107S-S9.8C	•	9.8	107	M6	0.10	3
MSN-M6-82S-S10C	•	10	82	M6	0.08	3
MSN-M6-122S-S10C	•	10	122	M6	0.12	3
MSN-M6-80S-S11.8C	•	11.8	80	M6	0.11	3
MSN-M6-120S-S11.8C	•	11.8	120	M6	0.17	3
MSN-M6-90S-S12C	•	12	90	M6	0.13	3
MSN-M6-130S-S12C	•	12	130	M6	0.19	3
MSN-M8-97S-S15C	•	15	97	M8	0.21	4
MSN-M8-147S-S15C	•	15	147	M8	0.33	4
MSN-M8-107S-S16C	•	16	107	M8	0.27	4
MSN-M8-157S-S16C	•	16	157	M8	0.40	4
MSN-M10-130S-S18C	•	18	130	M10	0.42	4
MSN-M10-190S-S18C	•	18	190	M10	0.62	4
MSN-M10-130S-S20C	•	20	130	M10	0.53	4
MSN-M10-190S-S20C	•	20	190	M10	0.78	4
MSN-M10-250S-S20C	•	20	250	M10	1.02	4
MSN-M12-185S-S23C	•	23	185	M12	0.98	6
MSN-M12-265S-S23C	•	23	265	M12	1.42	6
MSN-M12-145S-S25C	•	25	145	M12	0.91	6
MSN-M12-215S-S25C	•	25	215	M12	1.36	6
MSN-M12-285S-S25C	•	25	285	M12	1.80	6
MSN-M16-160S-S28C	•	28	160	M16	1.22	8
MSN-M16-230S-S28C	•	28	230	M16	1.77	8
MSN-M16-310S-S28C	•	28	310	M16	2.41	8
MSN-M16-157S-S32C	•	32	157	M16	1.61	8
MSN-M16-217S-S32C	•	32	217	M16	2.22	8
MSN-M16-287S-S32C	•	32	287	M16	2.94	8
MSN-M16-357S-S32C	•	32	357	M16	3.66	8

Оправка серии G-BODY Тип MGN

Новая линейка фрезерных оправок. В отличие от традиционных оправок, оправки G-Bodi прошли химикотермическую обработку - азотирование и закалку. Твердость поверхностного слоя составляет 65 HRc. В результате XTO повысились эксплуатационные свойства. Значительно увеличился срок службы узла крепления режущих пластин, возросла износоустойчивость и корозионная стойкость. Повысилась теплостойкость и виброустойчивость. Кроме того у оправок серии G-Bodi практически отсуствует эффект «приваривания» стружки.

Номер по	чие где		Bec	D ₂				
каталогу	Наличие на складе	D	l1	L	d	MD	КГ	
MGN-M8-17-S16	•	15.5	17	97	16	M8	0.13	4
MGN-M10-30-S20	•	19	30	100	20	M10	0.21	4
MGN-M12-35-S25	•	24	35	105	25	M12	0.36	4
MGN-M16-37-S32	•	29	37	107	32	M16	0.56	6

Примечание: При использовании фрезерных головок со стальным корпусом серии MGN, необходимо следовать рекомендация по выбору режимов резания для оправок серии MSN-...

Рекомендованные усилия зажима фрезерных головок

Резьба	Усилие затяжки фрезрных головок, Нм	Размер ключа исключая SMSA	Размер ключа для SMSA	При монтаже фрезерной
M6	8.0	8	-	головки, необходимо обратить внимание:
M8	16	10, 12	14	Контактные поверхности фрезерной
M10	16	14, 15	17	головки и корпуса фрезы должны быть тщательно очищены. После
M12	20	17	22	установки необходимо проверить зазор между головкой и корпусом фрезы.
M16	25	22, 26	27	телду толовкой и корпуссы фресы.

Зазор должен быть

более 0.5 мм

Рекомендации по выбору оправок для фрезерных головок

При использовании фрезерных головок диаметром свыше 16мм, рекомендуем твердосплавный корпус серии MSN диаметром (D1) на 1мм (или более) меньше диаметра (Dc) фрезерной головки.

Рекомендованно использование воздушного охлаждения или СОЖ для лучшей эвакуации стружки из зоны резания.

В случае чистовых операций, при использовании головки серий Mirror Ball, Mirror Radius и т.д., снижается риск поломки твердосплавного корпуса. Зазор должен быть более 0,5 мм.