NTK

Technical Information

Steel

Mort Meterial	Process		Cutting speed	Feed rate	Depth of Cut	Gra	ade
Work Material	Pro	cess	(m/min)	(mm/rev)	(mm)	1	2
		Bough	150 - 300	- 0.5	- 3.0	QM3	ZM3
	Turning	Rough	300 -	- 0.2	- 1.0	WA1	
	Turning	Finish	150 - 300	- 0.2	- 0.5	T15	T3N
Carbon Steel		FILIST	300 -	- 0.2	- 0.5	HC1	WA1
Alloy Steel	N 4:1	ling	100 - 150	- 0.15 (mm/t)	- 2.0	TA3	QM3
		ling	200 -	- 0.1 (mm/t)	- 2.0	C7X	
	Groo	oving	100 - 150	- 0.2		QM3	ZM3
	GIUC	Jvilig	200 -	- 0.2		N40	C7X
Stainless Steel			100 - 150	- 0.2	- 2.0	ZM3	QM3
3 series			150 - 300	- 0.2	- 2.0	T15	C7X
Stainless Steel			100 - 150	- 0.2	- 2.0	ZM3	QM3
4 series			150 - 300	- 0.3	- 2.0	T15	C7X
Bearing Steel			100 - 300	- 0.3	- 3.0	C7X	N40
Tool Steel			100 - 180	- 0.2	- 3.0	T15	T3N
Sintered Alloy			50 - 200	- 0.2	- 3.0	QM1	C7X
	Conti	nuous	100 - 150	- 0.25	- 0.5	HC7	HC4
Hardened Steel	Interr	upted	- 180	- 0.25	- 0.5	B36	
			50 - 150	- 0.5	- 3.0	SX9	
Inconel 718	Ro	ugh	50 - 250	- 0.4	- 3.0	WA1	
	Fin	ish	30 - 100	- 0.2	- 1.0	TA3	QM3
			80 - 200	- 0.5	- 3.0	WA1	
Waspaloy	Ro	ugh	100 - 400	- 0.4	- 3.0	SX9	
	Fin	ish	50 - 100	- 0.2	- 1.0	TA3	QM3
			50 - 100	- 0.5	- 3.0	SX9	
Inconel 713	Ro	ugh	50 - 150	- 0.4	- 3.0	WA1	
Rene 88	Fin	ish	30 - 80	- 0.2	- 1.0	TA3	QM3
			80 - 200	- 0.5	- 3.0	SX9	
Inconel	Ro	ugh	100 - 400	- 0.4	- 3.0	WA1	
6 series	Fin	ish	50 - 100	- 0.2	- 1.0	TA3	QM3
	_		80 - 250	- 0.5	- 3.0	SX9	
Hasteloy	Ro	ugh	100 - 500	- 0.4	- 3.0	WA1	
-	Fin	ish	50 - 100	- 0.2	- 1.0	TA3	QM3
	Ro	ugh	50 - 250	- 0.5	- 2.0	WA1	
Stellite	Finish		50 - 150	- 0.3	- 1.0	HC7	

Cast Iron

Work Material	Dro	cess	Cutting speed	Feed rate	Depth of Cut	Gra	ade
	FIO	2622	(m/min)	(mm/rev)	(mm)	1	2
		Rough	100 - 500	- 0.5	- 5.0	SX1	SX9
	Turning	Rough	500 - 1000	- 0.7	- 5.0	SX1	SX9
	running	Finish	100 - 500	- 0.3	- 1.0	HW2	HC2
		1 11 1511	500 - 1000	- 0.3	- 1.0	B20	B16
Gray Cast Iron		Rough	100 - 200	- 0.3 (mm/t)	- 5.0	QM1	QM3
Glay Cast IIOII	Milling	Rough	200 - 500	- 0.3 (mm/t)	- 5.0	SX1	SX8
	winning	Finish	100 - 150	- 0.15 (mm/t)	- 2.0	QM1	
		1 111311	200 - 500	- 0.1 (mm/t)	- 2.0	SX1	SX8
	Grooving		100 - 150	- 0.2		QM3	
	Giu	Jving	200 -	- 0.2		HW2	HC2
	Ro	ugh	150 - 300	- 0.5	- 2.0	SX9	SP2
Ductile Cast Iron	Finish	Continuous	100 - 450	- 0.25	- 1.0	HC6	
Ductile Cast Iron	FILIST	Interrupted	100 - 350	- 0.25	- 1.0	SX8	Q15
	Groo	oving	-200	- 0.2		Q15	HC6
Alloy Cast Iron			300 - 600	- 0.4	- 2.0	HW2	HC2
(Cylinder Liner)			600	- 0.4	- 2.0	B16	
Chilled Cast Iro	n		100 - 200	- 0.4	- 2.0	HC2	SX9

Others

Aluminum	Low Si content	100 - 500	- 0.4	- 2.0	UC2	UC1
Aluminum	Hi Si content	500 -	- 0.4	- 2.0	UC2	UC1
Non Ferrous (Copper , Brass)		300 - 700	- 0.3	- 4.0	KM1	T3N

Ceramic Series

					Phys	ical cha	aracter	istics	
	NTK Grade	Components	Applications	Density	Hardness	Bending strength		Thermal expan- sion coefficient	Heat conductivity
				g/cm³	HRA	MPa	GPa	X10 ⁻ 6/K	W/m-K
ed	SX1	Si ₃ N ₄	 Highly efficient cutting of gray cast iron 	3.2	93.5	1200	320	3.0	29
e-bas	SX2	Si ₃ N ₄	·Milling of gray cast iron	3.2	93.5	1100	320	3.0	29
Silicon-nitride-based	SX8	Si ₃ N ₄	· Strong interrupted cutting of gray cast iron	3.2	93.0	1200	320	3.2	33
ilicon	SX9	Si ₃ N ₄	•Ni-based Heat Resistant Alloys	3.3	93.5	1200	330	3.0	15
S	SP2	TiN-coating + Si₃N₄	•Rough turning of gray cast iron	3.2	93.5	1100	320	3.0	29
	HC1	Al ₂ O ₃	Al ₂ O ₃ • Semi-finishing and finishing of cast iron • Tube scarfing		94.0	700	400	7.8	17
	HW2	Al ₂ O ₃	Semi-finishing and finishing of cast iron Liner machining	4.1	94.0	750	390	7.8	19
	HC2	Al ₂ O ₃ +TiC	Semi-finishing and finishing of cast iron Machining of hardened materials	4.3	94.5	800	420	7.8	21
sed	HC4	Al ₂ O ₃ +TiC	Machining of hardened materials	4.6	95.5	1000	420	7.9	25
Alumina-based	ZC4	TiN-coating Al ₂ O ₃ + TiC	Machining of hardened materials	4.6	95.5	1000	420	7.8	25
Alumi	HC6	TiC + Al ₂ O ₃	 Semi-finishing and finishing of ductile materials Using Coolant semi-finishing and finishing of cast iron 	4.7	94.0	800	450	7.6	29
	HC7	HC7 Al ₂ O ₃ +TiC ·Machining of hardened materials Turning of roll materials ·Semi-finishing and finishing of cast iron		4.6	95.5	1000	420	7.9	25
	ZC7 TiN-coating Al ₂ O ₃ + TiC •Machining of hardened materials Turning of roll materials •Semi-finishing and finishing of cast incomendation			4.6	95.5	1000	420	7.9	25
Whisker-based	WA1	Al ₂ O ₃ + SiC	 Rough turning of heat-resistant alloys Highly efficient machining of cast iron Roughing of hardened rolls 	Rough turning of heat-resistant alloys Highly efficient machining of cast iron 3.7 94.5 1200		400	7.6	-	

CBN Series

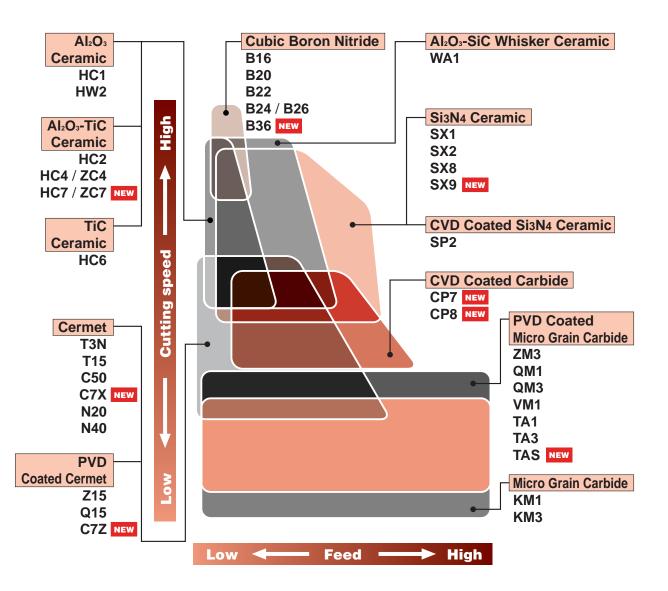
ure cts	NTK Grade	Binder	CBN content	Applications		
ssu pac	B16	B16TiN-coated special ceramics82%		High-speed rough finishing of gray cast iron and rolled materials		
-pre com	B20	Special ceramics	60%	High-speed finish turning of gray cast iron		
igh	B22	B22 TiN-based 80%		Turning of hardened rolls		
Itrah inter	B24/B26 TiN-based		65%	Continuous and interrupt cutting of sintered steel at middle speed ranges		
UI sii	B36	Special ceramics	65%	Interrupt cutting of sintered steel at middle speed ranges		

*Note : Data of coated products relates to the respective base materials.

Cermet Series

					Phys	ical cha	aracteri	istics	
	NTK Grade	Components	Applications	Density	Hardness	Bending strength	Young's modulus	Thermal expan- sion coefficient	Heat conductivity
				g/cm3	HRA	MPa	GPa	X10⁵/K	W/m-K
	T3N	TiC + TiN	 High-speed finishing of steel Machining of sintered alloys 	6.0	92.7	1400	450	8.3	13
ts	T15	TiC + TiN	·Semi-finishing and finishing of steel	6.3	92.5	1700	450	8.4	21
Cermets	N20	TiN-based	 Boring and grooving of steel Pipe scarfing 	5.6	91.5	1600	460	9.0	42
ပဳ	N40	TiN-based	 General turning of steel Grooving of steel 	5.9	91.5	1900	450	8.9	42
	C7X	TiCN	 Semi-finishing and finishing of steel Grooving of steel 	7.0	91.5	1800	440	8.2	31
coated mets	Z15	TiN-coating	 Semi-finishing and finishing of steel Finishing of ductile cast iron 	6.3	92.5	1700	450	8.4	21
	Q15	TiCN-coating	·High-speed finishing of ductile cast iron	6.3	92.5	1700	450	8.4	21
PVD ceri	C7Z	TiN-coating	•Boring and grooving of steel	7.0	91.5	1800	440	8.2	31

Micrograin Carbide Series


					Phys	ical cha	aracteri	stics	
	NTK Grade	Components	Applications	Density g/cm ³	Hardness HRA	Bending strength MPa		Thermal expan- sion coefficient X10 ⁻⁶ /K	Heat conductivity W/m-K
Micrograin carbide	KM1	Micrograin carbide	·Turning for aluminum	14.4	91.0	3000	580	5.8	63
Ľ	ZM3	TiN-coating	·Turning of stainless steel and titanium	14.4	91.0	3000	580	5.8	63
gra	QM1	TiCN-coating	 Turning of sintered alloys and heat resistant alloys 	14.8	92.0	2500	640	5.7	84
Micrograin ides	QM3	TiCN-coating	·Continuous/interrupt cutting and milling of steel	14.4	91.0	3000	580	5.8	63
	VM1	TiCN-coating	·Turning of free-cutting steel	14.8	92.0	2500	640	5.7	84
coated carb	TA1	TiAIN-coating	 Turning and milling of steel and ductile cast iron 	14.8	92.0	2500	640	5.7	84
PVD 0	TA3	TiAIN-coating	•Turning and milling of steel and ductile cast iron	14.4	91.0	3000	580	5.8	63
Ā	TAS	TiAIN-coating	·Turning for stainless steel	14.8	92.0	2500	640	5.7	84

• CVD-Coated Carbide Series

				Physical characteristics						
	NTK Grade	Components	nts Applications		Hardness HRA	Bending strength MPa		Thermal expan- sion coefficient X10 ⁻⁶ /K		
CVD-coated	CP7	Al ₂ O ₃ - TiCN + carbide	·Rough and semi-finish turning of cast iron	13.8	90.1	2200	580	-	-	
carbides	CP8	Al ₂ O ₃ - TiC + carbide	 Rough and semi-finish turning of cast iron 	15.0	92.2	2000	600	4.5	79	

*Note : Data of coated products relates to the respective base materials.

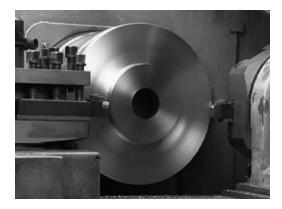
Application Range of NTK Insert Grade

GUIDELINES FOR CERAMIC SUCCESS

Use a Rigid Set-Up.

NTK ceramics work best when both the machine and work piece are secure - eliminate overhang.

Use Sturdy Tooling.


For best results, use toolholders designed for ceramics whenever possible. A top clamp with a pin lock is recommended when using an insert with a hole. Use a mechanical chip breaker if possible. Also, make sure that the insert pocket is clean and burr free.

Use the Largest Insert Size Possible

The strength of Ceramics has increased dramatically over the years, but the fact remains - larger is stronger.

Use Suggested Speeds and Feeds

Avoid dwelling in cuts. Consult charts.

Use a Negative Insert with the Largest Corner Angle.

EDGE STRENGTH INCREASES \bigcirc <td

Use the Largest Nose Radius Possible

Without Causing Chatter. Usually the stronger the nose radius the longer the tool life. Avoid using 0.4 corner radius inserts.

Use Proper Edge Preparation.

Success with ceramic greatly depends upon the cutting edge. Consult the edge preparation sections for proper specifications.

Use No Coolant with Ceramics Except

Silicon Nitride. If this is not possible then a flooded coolant condition must be used.

Use Ceramics Safely.

Make sure machine operators have adequate training in the use of high speed ceramics. Follow machining parameters with safety in mind at all times.

Use the Largest Lead Angle Possible.

Distributing the workload over a greater area of the cutting edge will prolong tool life.

• GUIDELINES FOR SUCCESSFUL MACHINING OF CAST IRONS

No Coolant.

Do not use coolant on heavy interruptions - especially at high speeds.

Roughing

When roughing cast iron the nose of the insert must be below the surface scale.

Out of Roundness

Out of round cutting conditions cause excessive tool wear. Make sure the insert nose is cutting at all times.

Sand in Castings.

When the scale contains sand, insert failure from depth of cut notching increases. Reduce the lead angle to minimize this problem.

Burrs

When a breakout problem occurs, use a larger nose radius, larger lead angle or decrease the feed rate exiting the workpiece.

Dwelling

Avoid dwelling in cuts. This will cause premature insert wear.

• Turning Gray Cast Iron (HB 180 - 230)

Cutting Condition	Coolant	NTK Grade Selection Per Speed Range		
Roughing-interrupted (as cast)	×	SX8 silicon nitride	(200 - 600m/min)	
Boughing continuous (co. cost)	0	SX1, SP2 silicon nitride	(300 - 1000m/min)	
Roughing-continuous (as cast)	×	HW2 ceramic	(500 - 800m/min)	
Finish interrunted	0	SP2, SX1 silicon nitride	(200 - 600m/min)	
Finish-interrupted	0	HC6 ceramic	(200 - 600m/min)	
	×	HW2,HCI ceramic	(500 - 800m/min)	
	×	HC2 ceramic	(300 - 600m/min)	
Finish-continuous	0	HC2 ceramic	(400 - 600m/min)	
	0	HC6 ceramic	(200 - 600m/min)	

• Turning Ductile (Nodular) Cast Iron (HB 180 - 250)

Cutting Condition	Coolant	NTK Grade Selection Per Speed Range		
Roughing-interrupted (as cast)	0	SX8 silicon nitride	(200 - 400m/min)	
Roughing-continuous (as cast)	0	SX9, SX1, SP2 silicon	n nitride (300 - 600m/min)	
Finish-interrupted	×	HC6 ceramic	(200 - 600m/min)	
Finish continuous	0	HC6 ceramic	(300 - 600m/min)	
Finish-continuous	0	HC2 ceramic	(300 - 600m/min)	

Milling Cast Irons

Cutting Condition	Coolant	NTK Grade Selection Per Speed Range		
Rough-gray-ductile	×	SX9, SX1 silicon nitride	(200 - 600m/min)	
	×	SX8 silicon nitride	(200 - 400m/min)	
Finish grov or dustile	0	SX9, SP2 silicon nitride	(200 - 600m/min)	
Finish-gray or ductile	×	HC6 ceramic	(100 - 200m/min)	

• **GUIDELINES FOR SUCCESSFUL USING CERMETS**

Tuning Steels.

Using cermets to machine steels provide the user with extended tool life, superior surface finishes and higher productivity through the use of speed. When using cermets to machine steels, feed rates and depth of cuts have to be selected more conservatively than with carbides because of the difference in strength.

Milling Steels.

The criteria for success when using cermets for milling are two fold - improved surface finishes and extended tool life. Most successful applications of cermets for milling are with cutters under 250 in diameter

Consult the "Guidelines for Cermet Success" section for additional information.

GRADE DISCUSSION

- T3N Use this grade when turning (35-50Rc) steels. Do not use on iterrupted cuts, only for finish applications. Can be used to mill (40 HRC) die steels. Do not run with coolant, if possible.
- **T15** Use these general purpose grades to finish and semi-finish steels and stainless steels.
- N40 Use N40 for the toughest steel applications. Maximum depth of cut -3.5mm. Can be run with or without coolant. Good choice on older machines. (90m/min and up)
- **C7X** Use C7X for general purpose milling of steels. Both exhibit excellent shock and wear resistance.

Carbon and Alloy Steels

Hardness (HB)	Cutting Condition	Speed Range	NTK Grade Selection
	Rough Turning	90 - 200	N40 / C7X
130 - 220	Finish Turning	240 - 360	T3N / T15 / C7X
	Milling	150 - 240	C7X
	Rough Turning	100 - 175	N40 / C7X
260 - 300	Finish Turning	150 - 240	T3N / T15 / C7X
	Milling	120 - 165	C7X
	Rough Turning	80 - 125	T15
300 - 400	Finish Turning	100 - 180	T3N
	Finish-Milling	75 - 120	C7X / T3N

Tool Steels

- 45 HRC	Finish Turning	100 - 135	T3N
- 45 1110	Finish-Milling	75 - 150	C7X

NOTE - Speeds based upon using a CNGA-120408 insert.

- Ceramics can be used in machining steels. Consult speed and feed chart.

- Mechanical chipbreakers should be used with ceramics.

GUIDELINES FOR CERMET SUCCESS

Use a Rigid Set-Up.

NTK cermets work best when both the machine and work piece are secure - eliminate overhang.

Use Sturdy Tooling.

Use rigid tooling which reduces the chance of chatter. Make sure the insert pocket is clean and burr free. Use a top clamp.

Use Largest insert Size Possible.Use Largest Nose Radius Possible Use Largest Lead Angle Possible. Use Cermets to Machine the Following.

Carbon Steels	Stainless Steels	Aluminum (with low Si)
Alloy Steels	Powdered Metal	Non-Ferrous Materials
Tools Steels	Inco 600-700 Series	Non-Metallic Materials

Use Cermets to Machine (HRC 35-50) Materials.

Cermets resist edge deformation and are very wear resistant when machining harder materials.

Use Suggested Speed Range.

Consult the speed chart for proper speeds cermet speeds increase productivity.

Use Correct Chipbreaker Design.

Do not curl the chips too tight. Avoid chips from striking the insert or piling up at cutting edge.

Use Light Feeds.

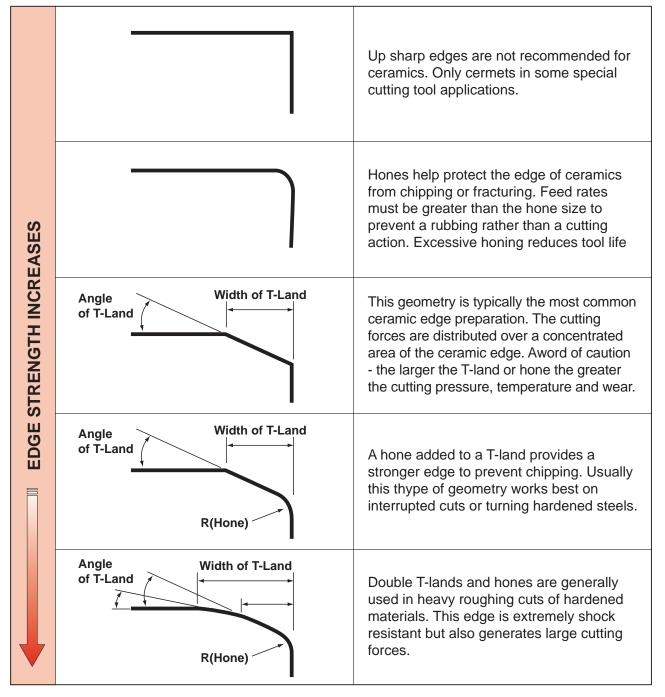
Do not exceed 0.38mm/rev feed rate. Cermets are more feed sensitive than carbides.

• IMPORTANT POINTS TO REMEMBER

Thermal Toughness.

Cermets are more thermal sensitive to coolant than carbides. As a result, rough turning, boring and milling should not be performed using coolant. Conversely, coolant can be used when finish turning or boring.

If a cermet insert breaks after machining several parts and coolant is being used, turn off the coolant, replace the cutting edge and start over. Usually, this type of cermet failure is thermal related. The toughness level of cermet materials increases when no coolant is used. Cermets resist cutting edge build-up, so they cut much freer and surface finishes are excellent without the use of coolant. If coolant has to be used, it must be a flooded condition.


Fracture Toughness.

Cermets are best used in semi-finishing and finishing applications. Cermets do not bend - carbides do. Roughing through scaled surfaces are usually best performed by carbides. Cermets can machine parts with interruptions but care must be taken in the form of larger lead angles, stronger insert geometries and larger nose radius. Do not rough any material using a 55° or 35° rhomboid cermet insert.

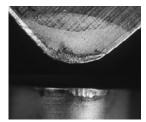
- Much of the success of ceramics are the result of using the correct edge preparations.
 Since ceramic is such a hard material, it needs some edge work in order to withstand cutting forces to optimize the cutting tool performance.
 The correct edge preparation must correspond to the ceramic grade being used, the kind of material being machined and the machining operation being performed.
- The majority of ceramic applications can be handled with NTK's standard edge preparations.

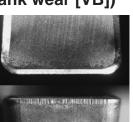
These edges are described on the next page. Whenever possible use a stocked standard edge preparation. As special conditions arise, then the edge preparation will have to be modified to meet these conditions. The following chart offers an explanation of edge preparations.

Explanation of Ceramic Cutting Edges

Standard Edge Preparation for NTK Ceramics

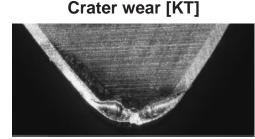
Grade	Shape	Thickness	I.C. Size	NTK Std. Edge Prep.	
HC1		4.76 or less		0.1 T-land	
HC2	Negative Rake	6.35 or over	all sizes	0.2 T-land	
HC6		0.55 01 0 0001		0.2 1-14110	
HW2			7.94 or less		
HC4 / ZC4	Positive Rake	all sizes	9.525 or over	0.05 T-land	
HC7 / ZC7			9.525 01 0001		
SX1	Negative Rake	all sizes	7.94 or less	0.1 T-land	
SX8	Negative Nake	all 31263	12.7 or over	0.2 T-land	
SP2	Positive Rake	all sizes	7.94 or less	0.1 T-land	
562		all 31285	9.525 or over		
SX5	Negative Rake	all sizes	all sizes	0.05 T-land	
SX9	Positive Rake	aii 31203	an 31283	0.05 1-14110	


Recommended Edge Preparation for HC1, HC2, HC6, HW2, ZC4, ZC7, SX1, SX8, SP2, SX9

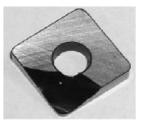

Material	Application	Shape & Edge Preparation
	Rough	① Negative rake 0.2 T-land (standard)
Cast iron	Fine Finish	① Positive rake 0.05 T-land (standard)
	T ITIE T ITIISIT	② Negative rake 0.1 T-land (standard)
	Rough	① Negative rake 0.2 T-land (standard) 7.94 thick
	Rough	② Negative rake 0.4 T-land (standard) 7.94 thick with Hone
Mild Steel	Finish-Semi-Finish	① Negative rake 0.1 T-land (standard)
WING Steel		② Negative rake 0.2 T-land (standard)
-	Finish with interruption	① Negative rake 0.2 T-land (standard)
		② Negative rake 0.2 T-land (special) with Hone
	Finish-Semi-Finish	① Negative rake 0.2 T-land (special)
Hardened Steel	Fine Finish	① Negative rake 0.1 T-land (standard)
		② Positive rake 0.05 T-land (standard)
Chilled Iron	Finish-Semi-Finish	② Positive rake 0.2 T-land with Hone (special)
Chined Iron	Mill Roll Turning	① CDH or RCGX Double T-land (standard) insert
Hi-Ni Alloy	Rough	① Positive rake 0.05 T-land
INCONEL 718	Finish	① Positive rake Heavy hone (special)
WASPALOY etc.	1 111511	② Positive rake 0.05 T-land

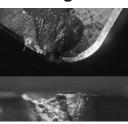
Technical Data

Damage and Solution


Normal Wear (Flank wear [VB])

Solution

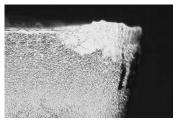

Reduce the cutting speed. Increase the feed rate. Increase nose-R size. Change the tool grade with better wear resistance.



Solution

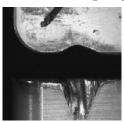
Reduce the cutting speed. Change dry cutting to wet cutting. Change the tool grade with better wear resistance.

Fracture and breakage



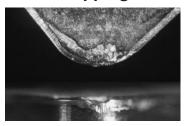
Solution

Review the cutting conditions (reduce "f \times d"). Increase the amount of cutting-edge honing. Change the tool grade with better notch resistance.


Built-up edge

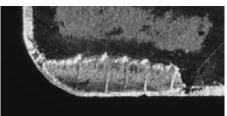
Solution

Increase the cutting speed and the feed rate. Increase the rake angle. Use oil coolant.


Notch wear [VC]

Solution

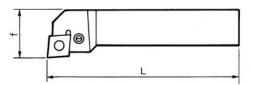
Change the tool grade with better wear resistance. Decrease the approch angle or change insert shape. Increase the feed rate.


Chipping

Solution

Increase the amount of cutting-edge honing. Reduce the rake angle. Change the tool grade with better notch resistance.

Thermal shock crack


Solution

Reduce the cutting speed and the feed rate. Change wet cutting to dry cutting. Change the tool grade with better thermal shock resistance.

Plastic Deformation

Solution Reduce the cutting speed and feed rate. Reduce the cutting depth. Change the tool grade with better heat resistance.

Edge	Shape of the edge	Dim	nension	s (mm)	Edge	Shape of the edge	Dim	nensions	s (mm)
code	Shape of the edge	٢E	Х	Y	code	Shape of the edge	r E	Х	Y
	80-deg rhombic insert.	0.4	0.007	0.028		35-deg rhombic insert	0.4	0.537	0.537
		0.8	0.015	0.055		+ 112°30' re	0.8	1.073	1.073
K	™ re	1.2	0.022	0.083	Q		1.2	1.61	1.610
	> ×	1.6	0.029	0.110		>	1.6	2.146	2.146
	L	2.4	0.044	0.165		X	2.4	3.218	3.218
	80-deg rhombic insert Type 31)	0.4	0.040	0.040		Square insert (Type 12).	0.4	0.164	0.164
	Te re	0.8	0.079	0.079		-re	0.8	0.329	0.329
L	No.	1.2	0.119	0.119	S	+ re	1.2	0.493	0.493
	>	1.6	0.159	0.159			1.6	0.658	0.658
		2.4	0.238	0.238		X L	2.4	0.986	0.986
	55-deg rhombic insert	0.4	0.463	-		35-deg rhombic insert	0.4	0.923	-
	- re	0.8	0.925	_		-	0.8	1.846	-
Р	- ie	1.2	1.389	_	V	i re	1.2	2.769	-
	c2°30	1.6	1.851	_		2030	1.6	3.692	-
	X OF L	2.4	2.776	_		X IL	2.4	5.538	-
	55-deg rhombic insert	0.4	0.211	0.211		Square insert (Type 17)	0.4	0.003	0.033
		0.8	0.422	0.422		+ o re	0.8	0.006	0.066
Q	+ 10130 re	1.2	0.633	0.633	Y	1 St V	1.2	0.009	0.099
	2030	1.6	0.844	0.844		> ×	1.6	0.012	0.132
	X	2.4	1.265	1.265		= <u></u>	2.4	0.017	0.132

Note: The values of X and Y in this table are based on a rake angle of 0 degrees. Therefore, these values slightly differ from actual ones.

" (Type XX)" denotes the type number of a standard C-shaped holder.

Determining the Position of the Insert Nose

Method of ca	Method of calculating the position of the nose(mm)		Values	Values of " ϕ d" and " $\gamma \varepsilon$ " used to calculate "m" (m					
			Inscribed of	circle code	Calculation value(ød)	Nose code	Nominal	Calculation	
	Shape	Calculation expression	-	5	3.971		value	value($\gamma \varepsilon$)	
re 1			-	6	4.761	Y	0.2	0.2032	
TONE!	Trian-	$m=\frac{3}{2}d-\gamma \varepsilon$	-	7	5.561	1	0.4	0.3969	
re i	gular		2	8	6.351	2	0.8	0.7938	
PHATE E			-	0	7.941	3	1.2	1.1906	
\checkmark	Square	m= $(\sqrt{2} - 1) \times \frac{d}{2} - \gamma \varepsilon$	3	-	9.525	4	1.6	1.5875	
pd re 10	e quai e	¹¹¹ (¹ 2 ¹) ¹ 2 ¹	4	-	12.701	6	2.4	2.3812	
ΔX_{k}			5	-	15.875				
	Rhombic	bic $m = \left(\frac{1}{\sin\frac{\theta}{2}} \cdot 1\right) \times \left(\frac{d}{2} \cdot \gamma \varepsilon\right)$	6	-	19.051				
		$\left(\sin \frac{1}{2} \right) 2$	8	-	25.401				

Cutting Edge Positional Dimension List for Each Nose RNose-R and Cutting Edge Positional Dimensions

Edge		Dim	nensions	s (mm)	Edge		Dim	nension	Dimensions (mm)			
code	Shape of the edge	r E	Х	Y	code	Shape of the edge	r E	Х	Y			
	Triangular insert (Type 21, 22)	0.4	0.283	0.012		Square insert (Type 13)	0.4	0.145	0.043			
		0.8	0.567	0.024			0.8	0.291	0.084			
A (G)	- re	1.2	0.850	0.036		← ≻i re	1.2	0.436	0.168			
(0)	> 03	1.6	1.134	0.048		600	1.6	0.581	0.252			
		2.4	1.701	0.072	Е	X_	2.4	0.872	0.503			
	Square insert (Type 11, 16)	0.4	0.089	0.024	(T)	Triangular insert (Type 24)	0.4	0.397	-			
		0.8	0.178	0.048		+	0.8	0.794	-			
	re	1.2	0.268	0.072		+ re	1.2	1.191	-			
	> 15	1.6	0.357	0.096			1.6	1.587	-			
	X L	2.4	0.535	0.143		X L	2.4	2.281	-			
	Triangular insert (Type 23)	0.4	0.370	0.099		Square insert	0.4	0.033	0.003			
		0.8	0.740	0.198			0.8	0.066	0.006			
B (R)	re	1.2	1.110	0.297	Н	re	1.2	0.099	0.009			
()	> >	1.6	1.480	0.397		>1 85	1.6	0.132	0.012			
		2.4	2.219	0.595		× L	2.4	0.089	0.017			
	80-deg rhombic insert (Type 21, 22)	0.4	0.028	0.007		55-deg rhombic insert	0.4	0.344	0.039			
		0.8	0.055	0.015		re	0.8	0.687	0.079			
	re	1.2	0.083	0.022			1.2	1.031	0.118			
	>1 15	1.6	0.110	0.029		> 33	1.6	1.375	0.157			
	X. L	2.4	0.165	0.044	J		2.4	2.062	0.236			
	Triangular insert (Type 25)	0.4	0.012	0.283		35-deg rhombic insert	0.4	0.839	0.065			
с	re	0.8	0.024	0.567		+ re	0.8	1.679	0.131			
(F)	N N	1.2	0.036	0.850		K S	1.2	2.518	0.196			
	XX	1.6	0.048	1.134		>1	1.6	3.357	0.261			
	≻⊺ <u>×, </u>	2.4	0.072	1.701		- X - L	2.4	5.036	0.392			
	Square insert (Type 14)	0.4	0.164			Square insert (Type 15)	0.4	0.024	0.089			
	+	0.8	0.329	_	к	- en re	0.8	0.048	0.178			
D	+ re	1.2	0.493	_		1º V	1.2	0.072	0.268			
	45%	1.6	0.658			> ×	1.6	0.096	0.357			
	X L	2.4	0.986	_			2.4	0.143	0.535			

Screw and Wrench List for Holders

Shana	Screw No.	Dime	Dimensions (mm)					
Shape	Screw No.	а	b	С	Torx	Item-No.		
	LR-S-2×3.7	M2×0.4	3.2	3.7	Т6	RLR-13S		
	LR-S-2×4.4	M2×0.4	3.2	4.4	Т6	RLR-13S		
Torx_	LR-S-2×5.5	M2×0.4	3.2	5.5	Т6	RLR-13S		
	LR-S-2.5×4.8	M2.5×0.45	3.6	4.8	T7	RLR-15S		
90°	LR-S-2.5×6	M2.5×0.45	3.6	6.0	T7	RLR-15S		
	LR-S-2.5×6.8	M2.5×0.45	3.6	6.8	T7	RLR-15S		
	LR-S-3×6.2	M3×0.5	5.2	6.2	T10	RLR-20S		
	LR-S-3×7.8	M3×0.5	4.2	7.8	T10	RLR-20S		
	LR-S-4×5.8	M4×0.7	5.8	5.8	T10	RLR-20S		
	LR-S-4×9	M4×0.7	5.8	9.0	T10	RLR-20S		
	LRIS-2.2×6	M2.2×0.45	3.2	6.0	Т6	RLR-13S		
. Torx	LRIS-2.5×7	M2.5×0.45	3.6	7.0	T7	RLR-15S		
	LRIS-3×6	M3×0.5	4.0	6.0	T10	RLR-20S		
	1230 - C	M3×0.5	4.4	9.0	Т8			
	LRIS-4×6	M4×0.7	5.8	6.0	T15	LLR-25S		
	LRIS-4×8	M4×0.7	5.8	8.0	T15	LLR-25S		
	LRIS-4×10	M4×0.7	5.8	10.0	T15	LLR-25S		
ISO standard	LRIS-5×10	M5×0.8	7.0	10.0	T20	LLR-28S		
- (E	1150 - C	M5×0.8	6.4	13.5	T10	RLR-20S		
• b •	1160 - C	M6×1	8.0	13.5	T20	LLR-28S		
	1161 - C	M6×1	8.0	10.5	T20	LLR-28S		
	1180 - C	M8×1	11.0	13.5	T20	LLR-28S		

Competitors' Grade Comparison Tables

• Ceramic

	NTK	CeramTec	Kennametal	Sandvik	Greenleaf	Toshiba	Ssang Yong
Al₂O₃-based (White ceramics)	HC1 HW2	SN60 SN80	K060 KW80 K090	CC620	GEM9/GEM19	LXA AZ5000	SZ200
Al₂O₃-TiC-based (Black ceramics)	HC2 HC4(ZC4) HC7(ZC7)	SH1/SH2 SH20F	KY1615 HT46D	CC650	GEM7 GEM2	LX11 LX21	ST100 ST300
Si₃N₄-based (Silicon-nitride)	SX1 SX2(SP2) SX9	SL500 SL100/SL250C SL800	KY3500 KY3400 KY1540	CC690 (GC1690)		FX105 FX90 CX710	SN500 SN300 SN700
Al₂O₃-SiCw-based (Whisker)	WA1		KY4300	CC670	WG300		
TiC-based	HC6						SD200

(): Coating

CBN

NTK	CBN content (%)	Sumitomo	Mitsubishi	Toshiba
B16	82		BN500	BX930
B20	60	BN250	MB730	BX350
B22	80	BN100	MB710	BX360
B24, B26	60	BNX20	MB820 MB825	BX850
B36	65	BN300	MB835	BX380

Cermet

	NTK	Sumitomo	Toshiba	Mitsubishi	Kyocera	Iscar
504	T3N	T05A	N302	NX22	TN30	IC20N
P01			X407	NIXOO	(PV30)	
		7404	X407	NX33	(PV30)	105001
	T15	T12A				IC520N
P10	(Z15)(Q15)	(T12Z)	NS520	NX1010		
	N20	T1200A	(GT530)	(GP20N)	TN60	
			N308	NX55		
P15	C7X(C7Z)					IC530N
				(UP35N)	TC40N	
	1	T250A	N350	NX335	TN60	
P20	C7X	T130A	NS530	NX99		
	(C7Z)	(T130Z)		NX530		IC75T
	N40		NS540	NX2525	TN90	IC30N
P25					(PV90)	
		CS8000			ŤC60Ń	

(): Coating

Coated Carbide

	NTK	Sumitomo	Toshiba	Mitsubishi	Sandvik	Iscar
P01		AC1000	T7005.T715X	UE6005	GC4015	TX100
P10		AC1000		UE6005		TP100
110		AC2000	T715X	UE6010	GC4015	TP1000/CP200
P20	QM1, VM1, TA1	AC2000		UC6010.UC6025	GC4025.GC4030	TP200/TX150
120		AC3000	T7020	F620.UP20M	GC1120.GC1020	CP250/CP300
P30	ZM3	AC3000.AC304	T725.T325	UC6025.UE6035	GC4035.GC235	TP400
1 30	QM3, TA3	AC230.AC325	GH330.AH330	AP15TF	GC1025.GC4030	CP500
P40	TA3, ZM3	AC3000				TP400
1 40	QM3	AC304		UE6035		P500
M10	CP8	AC1000	T715X	UC7020	GC215	TP100
INTO	010	AC2000			GC2015	CP200
M20	CP8	AC2000.AC3000	T715X	UC7020.F620	GC1025.GC2025	TP200/TP300
11120	010	AC325.AC304	GH330.AH330	UP20M	GC4035.GC1120	CP300/CP500
M30		AC3000	T335S	US735.F620	GC2035	TP300/TP400
		AC325	T325.AH740	AP15TF	GC235	TP40/CP500
M40			GH340		GC235	TP400
K01		AC105G	T5010.AH110	UC5005.UE6005	GC4015	TX100
K10	CP8	AC500G.AC211	T5020.AH1020	UC6010	GC3015	TP100
	010	EH10Z	GH110	F5010	GC4015	TX100/TX150
K20	TA1, QM1	AC500G	T5020.AH120	UC6010	GC4025	TX150
120		EH20Z	J740.AH750	AP15TF	GC1120.GC1020	CP200/CP250
K30	QM1, TA3	ACZ310		AP15TF	GC4035	CP500

The above data is based on estimations from the respective competitors' catalogs and other documents. Therefore, the listed data is not always the latest data or was approved by those competitors.

Material Cross Reference List • Low Alloy Steel

Carbon Steel

DIN	ISO	JIS
C10E / C10R	C10	S10C
C15E / C15R	C15E4 / C15M2	S15C
C22 / C22E / C22R	-	S20C
C25 / C25E / C25R	C25 / C25E4 / C25M2	S25C
C30 / C30E / C30R	C30 / C30E4 / C30M2	S30C
C35 / C35E / C35R	C35 / C35E4 / C35M2	S35C
C40 / C40E / C40R	C40 / C40E4 / C40M2	S40C
C45 / C45E / C45R	C45 / C45E4 / C45M2	S45C
C50 / C50E / C50R	C50 / C50E4 / C50M2	S50C
C55 / C55E / C55R	C55 / C55E4 / C55M2	S55C
C60 / C60E / C60R	C60 / C60E4 / C60M2	S58C

Cast Iron

EN-GJL-100	100	FC100
EN-GJL-150	150	FC150
EN-GJL-200	200	FC200
EN-GJL-250	250	FC250
EN-GJL-300	300	FC300
EN-GJL-350	350	FC350
EN-GJL-400	400	FC400

Ductile Cast Iron

EN-GJS-350	350-22	FCD350
EN-GJS-400	400-15	FCD400
EN-GJS-450	450-10	FCD450
EN-GJS-500	500-7	FCD500
EN-GJS-600	600-3	FCD600
EN-GJS-700	700-2	FCD700

Heat Resistant Alloy

X53CrMnNi21-9		SUH36
CrNi2520		SUH310
CrAl1205		SUH21
X6CrTi12	X6CrTi12	SUH409
	X2CrTi12	SUH409L
X45CrSi9-3		SUH1

• High Alloy Steel

DIN	ISO	JIS
	C70U	SK70
	HS18-0-1	SKH2
	HS6-5-3-8	SKH40
	HS1-8-1	SKH50
S6-5-2	HS6-5-2	SKH51
-	HS6-6-2	SKH52
S6-5-3	HS6-5-3	SKH53
-	HS6-5-4	SKH54
S5-5-2-5	HS6-5-2-5	SKH55
510-4-3-10	HS10-4-3-10	SKH57
	HS2-9-2	SKH58
	HS2-9-1-8	SKH59
	105V	SKS3
105WCr6	105WCr1	SKS31
X210Cr12	210Cr12	SKD1
	100CrMoV5	SKD12
X30WCrV9	X30WCrV9-3	SKD5
	X37CrMoV5-1	SKD6
(40CrMoV5	X40CrMoV5-1	SKD61
	X35CrWMoV5	SKD62
	32CrMoV12-28	SKD7
	55NiCrMOV7	SKT4

DIN	ISO	JIS		
17Cr3	-	SCr415		
17CrS3	-	SCr415		
-	20Cr4(H)	SCr420(H)		
-	20CrS4	SCr420		
34Cr4	34Cr4	SCr430		
34CrS4	34CrS4	SCr430		
37Cr4	37Cr4	SCr435		
37CrS4	37CrS4	SCr435		
41Cr4	41Cr4	SCr440		
41CrS4	41CrS4	SCr440		
18CrMo4	18CrMo4	SCM418		
18CrMoS4	18CrMoS4	SCM418 SCM435		
34CrMo4	34CrMo4			
34CrMoS4	34CrMoS4	SCM435		
42CrMo4	42CrMo4	SCM440		
42CrMoS4	42CrMoS4	SCM440		
-	22Mn6	SMn420		
-	36mN6	SMn438		
-	42Mn6	SMn443		
	41CrAlMo74	SACM645		

• Stainless Steels (Austenitic)

X10CrNi18-8	SUS301
X2CrNiN18-7	SUS301L
X10CrNiS18-9	SUS303
X5CrNi18-9	SUS304
X2CrNi19-11	SUS304L
X2CrNiN18-9	SUS304LN
X6CrNi18-12	SUS305
x6CrNi25-20	SUS310S
X5CrNiMo17-12-2	SUS316
X2CrNiMo17-12-2	SUS316L
X2CrNiMoN17-11-2	SUS316LN
X6CrNiMoTi17-12-2	SUS316Ti
X2CrNiMo19-14-4	SUS317L
X2CrNiMoN18-12-4	SUS317LN
X1CrNiMoCu25-20-5	SUS890L
X6CrNiTi18-10	SUS321
X6CrNiNb18-10	SUS347
X3NiCr18-16	SUS384
X3CrNiCu18-9-4	SUSXM7
	X2CrNiN18-7 X10CrNiS18-9 X5CrNi18-9 X2CrNi19-11 X2CrNiN18-9 X6CrNi18-12 x6CrNi25-20 X5CrNiMo17-12-2 X2CrNiMo17-12-2 X2CrNiMo17-11-2 X2CrNiMo19-14-4 X2CrNiMo19-14-4 X2CrNiMo19-14-4 X2CrNiMoN18-12-4 X1CrNiMoCu25-20-5 X6CrNiTi18-10 X3NiCr18-16

• Stainless Steels (ferritic / tensitic)

X6CrA113 X6CrA113 SUS405 X6Cr17 X6Cr17 SUS430 X7CrS18 X7CrS17 SUS430F X6CrTi17 X3CrTi17 SUS430LX X6CrNb17 X3CrTi17 SUS430JL X6CrNb17 X2CrTi17 SUS430JL X6CrMo17-1 X0S430LX SUS430LX X6CrNb17 X2CrTi17 SUS430LX X6CrMo17-1 SUS430L SUS430L X6CrMo17-1 X0S430L SUS430L X10rMoTi16-1 SUS434L SUS436L X10rMoTi18-2 SUS444 SUS440 X10Cr13 X12Cr13 SUS410 X6Cr13 SUS410S X12CrS13 SUS410S X20Cr13 X20Cr13 SUS420J1 X30Cr13 SUS420J2 X20Cr13 X30Cr13 SUS420J2 X29CrS13 SUS420JF			/
X7CrS18 X7CrS17 SUS430F X6CrTi17 X3CrTi17 SUS430LX X6CrNb17 X2CrTi17 SUS430J1L X6CrNb17 X2CrTi17 SUS430J1L X6CrMo17-1 X6CrMo17-1 SUS434 X1CrMoTi16-1 SUS436L X2CrMoTi18-2 X10Cr13 X12Cr13 SUS410 X6Cr13 X6Cr13 SUS410S X10Cr13 X12CrS13 SUS416 X20Cr13 X20Cr13 SUS420J1 X30Cr13 X30Cr13 SUS420F	X6CrA113	X6CrA113	SUS405
X6CrTi17 X3CrTi17 SUS430LX X6CrNb17 X2CrTi17 SUS430LX X6CrNb17 X2CrTi17 SUS430J1L X6CrNb17-1 X6CrMo17-1 SUS434 X1CrMoTi16-1 SUS436L X10rMoTi16-1 SUS434 X10Cr13 X12Cr13 SUS410 X6Cr13 X6Cr13 SUS410S X10r13 X12CrS13 SUS416 X20Cr13 X20Cr13 SUS420J1 X30Cr13 X30Cr13 SUS420J2 X29CrS13 SUS420F SUS420F	X6Cr17	X6Cr17	SUS430
X6CrNb17 X2CrTi17 SUS430J1L X6CrNb17-1 X6CrMo17-1 SUS434 X1CrMoTi16-1 SUS436L X1CrMoTi16-1 SUS436L X10rMoTi18-2 SUS444 X10Cr13 X12Cr13 SUS410 X6Cr13 X6Cr13 SUS410S X10r13 X12CrS13 SUS416 X20Cr13 X20Cr13 SUS420J1 X30Cr13 X30Cr13 SUS420J2 X29CrS13 SUS420F	X7CrS18	X7CrS17	SUS430F
X6CrMo17-1 X6CrMo17-1 SUS434 X1CrMoTi16-1 SUS436L X2CrMoTi18-2 SUS444 X10Cr13 X12Cr13 SUS410 X6Cr13 X6Cr13 SUS410S X12CrS13 SUS416 SUS420J1 X30Cr13 X30Cr13 SUS420J2 X29CrS13 SUS420F	X6CrTi17	X3CrTi17	SUS430LX
X1CrMoTi16-1 SUS436L X2CrMoTi18-2 SUS444 X10Cr13 X12Cr13 SUS410 X6Cr13 X6Cr13 SUS410S X12CrS13 SUS416 SUS416 X20Cr13 X20Cr13 SUS420J1 X30Cr13 X30Cr13 SUS420J2 X29CrS13 SUS420F	X6CrNb17	X2CrTi17	SUS430J1L
X2CrMoTi18-2 SUS444 X10Cr13 X12Cr13 SUS410 X6Cr13 X6Cr13 SUS410S X12CrS13 SUS410S SUS410S X20Cr13 X20Cr13 SUS410 X30Cr13 X20Cr13 SUS420J1 X30Cr13 X29CrS13 SUS420F	X6CrMo17-1	X6CrMo17-1	SUS434
X10Cr13 X12Cr13 SUS410 X6Cr13 X6Cr13 SUS410S X12CrS13 SUS410S X20Cr13 X20Cr13 SUS420J1 X30Cr13 X30Cr13 SUS420J2 X20CrS13 SUS420F SUS420F		X1CrMoTi16-1	SUS436L
X6Cr13 X6Cr13 SUS410S X12CrS13 SUS416 X20Cr13 X20Cr13 SUS420J1 X30Cr13 X30Cr13 SUS420J2 X29CrS13 SUS420F SUS420F		X2CrMoTi18-2	SUS444
X12CrS13 SUS416 X20Cr13 X20Cr13 SUS420J1 X30Cr13 X30Cr13 SUS420J2 X29CrS13 SUS420F	X10Cr13	X12Cr13	SUS410
X20Cr13 X20Cr13 SUS420J1 X30Cr13 X30Cr13 SUS420J2 X29CrS13 SUS420F	X6Cr13	X6Cr13	SUS410S
X30Cr13 X30Cr13 SUS420J2 X29CrS13 SUS420F		X12CrS13	SUS416
X29CrS13 SUS420F	X20Cr13	X20Cr13	SUS420J1
	X30Cr13	X30Cr13	SUS420J2
		X29CrS13	SUS420F
X20CrNi17-2 X19CrNi16-2 SUS431	X20CrNi17-2	X19CrNi16-2	SUS431
X70CrMo15 SUS440A		X70CrMo15	SUS440A
X105CrMo17 SUS440C		X105CrMo17	SUS440C

Titanium Alloys

TiAl5Sn2.5	
TiAl6V4	
TiAl6V4ELI	
TiAl4Mo4Sn4Si0.5	

Conversions on Brinell Hardness of Steel

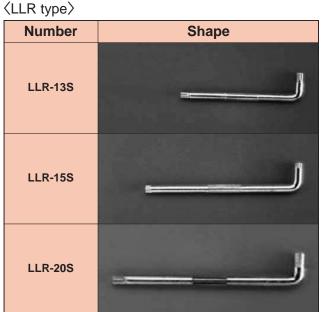
Brinell		nell hardn alls, 3000				Rockwell	hardness			Rockwell h al brale inc			Tensile strength
recess diameter mm	Standard ball	Hultgren ball	Tungsten carbide ball	Vickers hardness	Scale A Load: 60 kgf brale indenter	Scale B Load: 100 kgf Diameter: 1/16"" indenter	brale indenter	Scale D Load: 100 kgf brale indenter	15-N scale Load: 15 kgf	30-N scale Load: 30 kgf	45-N scale Load: 45 kgf"	Shore hardness	kgf/mm2 [N/mm2] Approximate value (1)
 	- - - -	 	 767 757	940 920 900 880 860	85.6 85.3 85.0 84.7 84.4	- - - -	68.0 67.5 67.0 66.4 65.9	76.9 76.5 76.1 75.7 75.3	93.2 93.0 92.9 92.7 92.5	84.4 84.0 83.6 83.1 82.7	75.4 74.8 74.2 73.6 73.1	97 96 95 93 92	- - - -
2.25 — —		- - -	745 733 722	840 820 800	84.1 83.8 83.4	_ _ _	65.3 64.7 64.0	74.8 74.3 73.8	92.3 92.1 91.8	82.2 81.7 81.1	72.2 71.8 71.0	91 90 88	
2.30 — —			712 710 698	780 760	 83.0 82.6	_ _ _	63.3 62.5		 91.5 91.2	80.4 79.7			
2.35 	- - - -	 	684 682 670 656 653	740 737 720 700 697	82.2 82.2 81.8 81.3 81.2	- - - -	61.8 61.7 61.0 60.1 60.0	72.1 72.0 71.5 70.8 70.7	91.0 91.0 90.7 90.3 90.2	79.1 79.0 78.4 77.6 77.5	68.6 68.5 67.7 66.7 66.5	- 84 83 - 81	- - - -
- - 2.45	- - - -	- - - -	674 638 630 627	690 680 670 667	81.1 80.8 80.6 80.5	- - - -	59.7 59.2 58.8 58.7	70.5 70.1 69.8 69.7	90.1 89.8 89.7 89.6	77.2 76.8 76.4 76.3	66.2 65.7 65.3 65.1	 80 79	- - -
2.50		601 —	601	677 640	80.7 79.8	-	59.1 57.3	70.0 68.7	89.8 89.0	76.8 75.1	65.7 63.5	- 77	
2.55	-	578	578	640 615	79.8 79.1	_	57.3 56.0	68.7 67.7	89.0 88.4	75.1 73.9	63.5 62.1	- 75	
2.60 {		555 — 534	555	607 591 579	78.8 78.4 78.0		55.6 54.7 54.0	67.4 66.7 66.1	88.1 87.8 87.5	73.5 72.7 72.0	61.6 60.6 59.8	 73 	210 {2095} 205 {2010}
2.05		534 - 514	534	579 569 553	77.8	-	54.0 53.5 52.5	65.0	87.5 87.2 86.7	71.6	59.8 59.2 58.0	- 71	205 {2010} 202 {1981} 195 {1912}
	495	-	514	547	76.9	_	52.0 52.1	64.7 64.3	86.3	70.3	57.6	70	193 (1912) 193 (1893) 189 (1854)
2.75		495 —	495	530 528	76.4 76.3	_	51.1 51.0	63.9 63.8	86.0 85.9	69.5 69.4	56.2 56.1	 68	186 (1824) 186 (1824)
2.80	477 — —	477 -	- - 477	516 508 508	75.9 75.6 75.6	- - -	50.3 49.6 49.6	63.2 62.7 62.7	85.6 85.3 85.3	68.7 68.2 68.2	55.2 54.5 54.5	 66	181 {1775} 177 {1736} 177 {1736}
2.85	461 — —		- - 461	495 491 491	75.1 74.9 74.9	_ _ _	48.8 48.5 48.5	61.9 61.7 61.7	84.9 84.7 84.7	67.4 67.2 67.2	53.5 53.2 53.2	 65	172 {1687} 170 {1667} 170 {1667}
2.90 {	444 — —	444 —		474 472 472	74.3 74.2 74.2	- - -	47.2 47.1 47.1	61.0 60.8 60.8	84.1 84.0 84.0	66.0 66.8 65.8	51.7 51.5 51.5	- - 63	162 {1589} 162 {1589} 162 {1589}
2.95 3.00 3.05 3.10 3.15	429 415 401 388 375	429 415 401 388 375	429 415 401 388 375	455 440 425 410 396	73.4 72.8 72.0 71.4 70.6	- - - -	45.7 44.5 43.1 41.8 40.4	59.7 58.8 57.8 56.8 55.7	83.4 82.8 82.0 81.4 80.6	64.6 63.5 62.3 61.1 59.9	49.9 48.4 46.9 45.3 43.6	61 59 58 56 54	154 {1510} 149 {1461} 142 {1392} 136 {1334} 129 {1265}
3.20 3.25 3.30 3.35 3.40	363 352 341 331 321	363 352 341 331 321	363 352 341 331 321	383 372 360 350 339	70.0 69.3 68.7 68.1 67.5		39.1 37.9 36.6 35.5 34.3	54.6 53.8 52.8 51.9 51.0	80.0 79.3 78.6 78.0 77.3	58.7 57.6 56.4 55.4 54.3	42.0 40.5 39.1 37.8 36.4	52 51 50 48 47	124 {1216} 120 {1177} 115 {1128} 112 {1098} 108 {1059}
3.45 3.50 3.55 3.60 3.65	311 302 293 285 277	311 302 293 285 277	311 302 293 285 277	328 319 309 301 292	66.9 66.3 65.7 65.3 64.6	(107.5) (107.0) (106.0) (105.5) (104.5)	33.1 32.1 30.9 29.9 28.8	50.0 49.3 48.3 47.6 46.7	76.7 76.1 75.5 75.0 74.4	53.3 52.2 51.2 50.3 49.3	34.4 33.8 32.4 31.2 29.9	46 45 43 41	105 {1030} 103 {1010} 99 {971} 97 {951} 94 {922}
3.70 3.75 3.80 3.85 3.90	269 262 255 248 241	269 262 255 248 241	269 262 255 248 241	284 276 269 261 253	64.1 63.6 63.0 62.5 61.8	(104.0) (103.0) (102.0) (101.0) 100.0	27.6 26.6 25.4 24.2 22.8	45.9 45.0 44.2 43.2 42.0	73.7 73.1 72.5 71.7 70.9	48.3 47.3 46.2 45.1 43.9	28.5 27.3 26.0 24.5 22.8	40 39 38 37 36	91 {892} 89 {873} 86 {843} 84 {824} 82 {804}
3.95 4.00 4.05 4.10 4.15	235 229 223 217 212	235 229 223 217 212	235 229 223 217 212	247 241 234 228 222	61.4 60.8 — — —	99.0 98.2 97.3 96.4 95.5	21.7 20.5 (18.8) (17.5) (16.0)	41.4 40.5 — — —	70.3 69.7 — —	42.9 41.9 — —	21.5 20.1 — — —	35 34 - 33 -	80 {785} 78 {765}
4.20 4.25 4.30 4.35 4.40	207 201 197 192 187	207 201 197 192 187	207 201 197 192 187	218 212 207 202 196	- - - -	94.6 93.8 92.8 91.9 90.7	(15.2) (13.8) (12.7) (11.5) (10.0)	- - - -	- - - -	- - - -	- - - -	32 31 30 29 	70 {686} 69 {677} 67 {657} 65 {637} 63 {618}
4.45 4.50 4.55 4.60 4.65	183 179 174 170 167	183 179 174 170 167	183 179 174 170 167	192 188 182 178 175	- - - -	90.0 89.0 87.8 86.8 86.0	(9.0) (8.0) (6.4) (5.4) (4.4)	- - - -	- - - -	- - - -	- - - - -	28 27 - 26 -	63 {618} 61 {598} 60 {588} 58 {569} 57 {559}
4.70 4.80 4.90 5.00 5.10	163 156 149 143 137	163 156 149 143 137	163 156 149 143 137	171 163 156 150 143	- - - -	85.0 82.9 80.8 78.7 76.4	(3.3) (0.9) — — —	- - - -	- - - -	- - - - -	- - - -	25 - 23 22 21	56 {549} 53 {520} 51 {500} 50 {490} 47 {461}
5.20 5.30 5.40 5.50 5.60	131 126 121 116 111	131 126 121 116 111	131 126 121 116 111	137 132 127 122 117	- - - -	74.0 72.0 69.8 67.6 65.7	- - - -	- - - -	- - - -	- - - - -	- - - -	 20 19 18 15	46 {451} 44 {431} 42 {412} 41 {402} 39 {382}

Notes:

The numerals parenthesized in this table are usually not used.
 The units and values enclosed in braces ({ }) in this table are based on SI units and are shown for reference only. (1 N/mm² = 1 MPa)
 This table is an excerpt from the JIS Iron and Steel Handbook.

Technical Data

Standard Parts


Information for wrench specifications

With a view aimed at improved machinability and environment - friendly parts, NTK has conducted partial reviews on the specifications of its conventional LLR-type wrenches. Please understand that when current products run out of stock, new specifications will be incorporated into new wrenches.

◆The following L-Type wrenches are available only as optional items:

Optional

Tightening Precautions

- Before using a wrench , make sure that the front end of the wrench and the wrench hole section of the screw to be tightened are free from plastic deformation.
- As shown in the views below , apply the wrench vertically to the screw.

• Be extra careful not to tighten the screw at a torque exceeding its guaranteed value. Overtorqueing could result in wrench breakage.

For safe use of the Extra Hard Tool Product safety.

1. To use extra hard tool product.

In accordance with the Product Liability Law (PL law) that has been in effect since July 1, 1995, we affix warning labels or caution labels to the packages of the products which are covered by the law. However, we donÅf t affix specific caution labels onto the tool itself. Therefore, please read this leaflet before using extra hard tool products and extra hard tool materials. In addition, we would like to ask you to inform your operators of the content of this leaflet as part of your safety training.

2. Basic features of extra hard tool materials

2-1. Meaning and usage of terms in this leaflet

Extra hard tool material: Generic name for tool materials such as extra hard alloys, cermet, ceramic, CBN sintering material and diamond sintering material.

Extra hard alloy : Tool material which is mainly made of WC (Carbonized tungsten)

Extra hard : Abbreviation for extra hard tool materials, or the abbreviation for extra hard alloy in the narrow sense. Extra hard tool : Generic name of tools which are made of extra hard tool material.

2-2. Physical characteristics

Appearance: Each material is different. Example: Gray, black, gold color, etc. Odor: None Hardness : Extra hard cermet: HV500 to 3000kg/mm², Ceramic : HV1000 to 4000kg/mm² Hardness : CBN sintering material : HV 2000 to 5000 kg/mm², Diamond sintering material: HV8000 to 12000kg/mm² Gravity: Extra hard: 9 to 16, cermet: 5 to 9, cerami : 2 to 7, CBN and diamond sintering material 3 to 5

2-3. Component

Carbide, nitride, carbonitride, oxide such as W, Ti, Al, Si, Ta, B, and materials that contain Co, Ni, Cr, Mo, etc. in addition to those compounds.

3. Cautions for handling extra hard tool materials

- Extra hard materials can sometimes be quite fragile, although they are normally very hard. The materials may be damaged by sharp impact or excessive tightening.
- Since extra hard materials have high specific gravity, care should be taken when handling large products or large amounts of the products which are made of those materials.
- Extra hard materials have different thermal expansion ratios from other metallic materials. Therefore, cracks may occur in the product after shrinkage fit or cold shrinkage fit because the temperature for use is significantly higher or lower than the specification temperature.
- If the extra hard material has corrosion due to liquid for grinding, lubricant or water, etc., the strength of the material will be deteriorated significantly. Be sure to store the material where it will not come in contact with liquids or water.

4. Cautions for machining extra hard tools

- Extra hard tools may lose strength significantly depending on the surface condition. Be sure to use diamonds for grinding.
- Extra hard tools may generate dust during grinding. If you inhale a great deal of the dust, it may affect your health. Please make sure to have equipment for disposal and wear protective devices such as a mask, etc. If the dust comes in contact with your bare skin gets into your eyes, wash thoroughly with water.
- When grinding the extra hard material or soldered material, heavy metal component will be included in the waste fluid. So, make sure to dispose of the waste fluid properly.
- · When regrinding extra hard tools, do a post check to be sure that no cracks have occurred.
- If you use a laser or electric pen, etc. to mark the extra hard material or products, it may cause cracks. Do not make markings at places where stress will be applied.
- If electric discharge machining is conducted on the extra hard material, remnant cracks may occur on the surface which cause the material to weaken. Be sure to remove any cracks by grinding, if necessary.
- When soldering the extra hard materials, if the material temperature is much lower or higher than the melting temperature of the soldering material, it may cause defluxion or breakage of the product. Be careful about the temperature.

Cautions for using cutting tools

Objective product	Danger	Countermeasure
Cutting tools in general	◎This type of tool has very sharp blade. If you touch it directly, you may get injured.	*Wear protective gear, such as protective gloves, etc., especially when taking out the product from the case or attaching the tool to a machine,
	If you use it improperly or if the conditions for use are inappropriate, it may cause breakage or shattering of the tool, which may result in injury.	 *Wear protective gear such as safety covers or protective glasses. *I Use within the recommended purpose of usage. Refer to the operation manual, catalogue, etc.
	Sudden increase of cutting resistance due to a mixture of impact and burden or excessive abrasion may cause breakage or shattering of the tool, which may result in injury.	 *Wear protective gear such as safety cover or protective glasses. *Stop the machine, wear the protective gloves and use tools such as nipper or clipper, etc. to remove cutting chips.
	◎Tools or workpieces will be very hot while cutting. Therefore, if you touch them immediately after the machining, you may get burn injury.	*Wear protective gear such as protective gloves.
	©Sparks, heat generated due to breakage while cutting, cutting chips may also cause a fire.	 Do not use the tool where there is a possibility of fire or explosion. * If you use insoluble cutting lubricant, be sure to have antifire provisions.
	When using the tool at high speed rotation if the whole machine including the holder of the machine is not well balanced, the tool may get broken due to tremor or vibration, which may result in injury.	 *Wear protective gear such as safety cover or protective glasses. *Make sure to have a trial operation in advance in order to confirm that there is no vibration or abnormal sound.
	◎Touching burrs on the machined product directly may result in injury.	* Do not touch with bare hands.
Throw-away type (blade change type) tools in general	◎If the chip or parts are not clamped securely, those may fall down or scatter while cutting, which may cause injury.	 Clean the surface for attachment of an insert or the part for fixture of the insert completely before attaching the insert. *Make sure that the insert or the part is clamped securely using a spanner provided with the product before attachment. Also, do not use any inserts or parts other than the ones provided with the products.
	◎If the tool is tightened too tightly using a tool such as pipe, etc., the chip or tool may fall down or shatter while cutting. This is dangerous.	* Do not use a tool such as a pipe. Use the spanner which is provided with the product.
	○When using the tool at high speed rotation, a part or chip may be thrown out by centrifugal force, which is very dangerous. Be careful about handling the tool safely.	* Use the tools only for the recommended purposes. Refer to the operation manual, catalog, or other source of information.
Cutters and other tools that are rotated	◎The sharp cutter blades may cause injury if you touch them directly with your hands.	*Wear protective gear such as protective gloves, etc.
for use	◎The tool may be deflected due to eccentric rotation or bad balance that will cause vibration, breakage or scattering of the tool, which may result in injury.	 * Use the tool within the recommended rotation speed. * Check and adjust the accuracy of rotating section or balance periodically so that eccentric rotation or deflection does not occur due to abrasion of the bearings, etc.
Soldering tool	OYou may get injured due to defluxion or breakage of the chips, etc.	 Confirm that the soldering is secure before use. Do not use under conditions which may cause the tool to reach high temperatures.
Others	Repeating soldering many times may cause the chip to be broken easily. This is dangerous.	*Do not use the chip which has been soldered many times because the strength will be lower.
	OUsing the tool for other than its intended purposes may cause breakage of the machine or tool. This is very dangerous.	* Use the tools only as specified.

Product Index

Insert

Material	Grade	Page
Carbide	KM1	112
Carbide	KM3	112
	B16	40
	B20	36
CBN	B22	36
CDN	B24	36
	B26	36
	B36	34
	HC1	20
	HC2	30
	HC4	30
	HC6	33
	HC7	26
	HW2	20
Ceramics	SP2	14
	SX1	12
	SX8	16
	SX9	18
	WA1	22
	ZC4	30
	ZC7	26
	C7X	42, 96
	C7Z	42, 96
	N20	96
Cormot	N40	96
Cermet	Q15	96
	T15	96
	T3N	96
	Z15	96
Diamond coating	UC1	43
	UC2	43
	QM1	112
	QM3	112
	TA1	112
PVD coated carbide	TA3	112
	TAS	112
	VM1	112
	ZM3	112

Holder

Application	Page
Bearing Internal Machining Outside Machining R-Chamfering 	186 182 176
Boring Bar	150
End Milling • Gear Tooth Chamfering Tools • Indexble Milling Tools	206 200
Grooving Internal Grooving Outside Grooving 	135 121
Milling Cutter	48
Outside Machining Holder	82
Poly-V	190
Roll Tools	168
Threading Internal Threading Outside Threading 	147 145
Tool Holders For Ceramic ● Boring Bar ● External Holder	73 54
Tube Scarfing	196

• PARTS

Screw	
-------	--

226

• Technical Information 212