

						Обра	абать	іваем	ь м	атери	1алы
Серия	Пластины режущие Форма	Вид обработки	Описание	Диапазон диаметров	Страница	Легкие сплавы	Чугуны	Стали	Нержавеющие стали	Закаленные стали	Труднообраба- тываемые
		Торцовые фрезь	і, обработка плоскостей								
Heptamill - HEP Ap = $5/12$ мм $\phi = 42^{\circ}$ (при поперечной подаче) $\gamma = +8^{\circ}$	6	Фрезерование Профильное фрезерование Фрезерование интовая интерполяция Фрезерование осоевой подячей	Сочетание технологии работы с высокими подачами с классической схемой фрезерования. Максимальная производительность. При жесткой технологической системе производительность в 1,5-2 раза больше чем у остальных черновых фрез производства Dijet.	Ø50 63 80 100 125 160 200	Б-10		+	+	+	+	+
Nega Heptamill NHP		Фрезерование плоскости фрезерование карманов	Фрезерование чугуна, стали и нержавеющей стали, стандартный и мелкий шаг зубьев, высокая минутная подача. Высокоэффективное фрезерование плоскостей на мощном и жестком оборудовании.	Ø63 80 100 125 160 200 250	Б-13		+	+	+		
OSMN OktoSurf Power Mill Ap = 3,2 - 5,5 мм	FINIST	Фрезерование	Высокоэкономичная обработка плоскостей.	Ø50 63 80 100 125 160 200	Б-15	+	+	+	+		+
SSE45 Cutter Ap = 6 μμ φ = 45° γ = +20		Фрезерование	Острая геометрия и зачистная кромка в сочетании с твердосплавной опорной пластиной. Универсальное применение.	Ø50 63 80 100 125	Б-17	+	+	+	+	+	
SM45 SurfaceMill45 Ap = 6 MM ϕ = 45°	FINIST	Фрезерование	Высокопроизводительное фрезерование плоскостей с низким усилием резания	Ø50 63 80 100 125 160 200	Б-18	+	+	+	+		+
Classic Double Square Ap = 6,5 - 11 мм	FINIST	Фрезерозание	Предназначена для чистового, получистового и чернового фрезерования плскостей.	Ø50 63 80 100 125 160 200 250 315	Б-19	+	+	+	+		+
Finish Jet Mill - FJM $Ap = 0,1/0,3 \text{ MM}$ $\phi = 90^{\circ}$ $V = 0$	9	Фрезерование плоскости	Чистовая обработка плоскостей с высокой производительностью.	Ø80 100 125 160 200 250	Б-22		+	+	+	+	

						Обра	бать	іваем	ьіе м	атері	иалы
Серия	Пластины режущие Форма	Вид обработки	Описание	Диапазон диаметров	Страница	Легкие сплавы	Чугуны	Стали	Нержавеющие стали	Закаленные стали	Труднообраба- тываемые
		Торцовые фрезы, обр	аботка плоскостей и уступов								
SSD90 Cutter - SSD90 Ap = 11 MM ϕ = 90° γ = +10°	0	Фрезерование уступов Фрезерование плохиости	Обработка плоскостей и уступов с высокой точностью и хорошей шероховатостью.	Ø50 63 80 100 125	Б-24		+	+	+	+	
FTP-90 Ap = 15 mm	FINIST ▶	Фрезерование плоскости Фрезерование уступов	Торцевая фреза универсального применения. Экономичная линия.	Ø63 80 100 125 160	Б-25		+	+	+		
T3 Shoulder SIX Ap = 13 mm	FINIST	Фрезерование плоскости Фрезерование уступов Фрезерование пазов	Высокоэффективная черновая и получистовая обработка уступов, плоскостей и пазов	Ø50 63 80 100 125 160 200	Б-26	+	+	+	+		+
T4TS Tangen Shoulder Ap = 12 mm	FINIST	Фрезерование от ответительной проскости Фрезерование от ответительной от ответительного от ответительного от от от	Серия торцевых фрез для черновой обработки при тяжелых условиях резания	Ø50 63 80 125 160	Б-27	+	+	+	+	±	+
P90 Perfect90											
Ap = 10,7 mm φ = 90°	FINIST	Фрезерование плоскости Фрезерование уступов	Чистовая и получистовая обработка уступов, плоскостей и пазов	Ø50 63 80 125 160	Б-28	+	+	+	+		+
7 00	Фрезы для і	∣ работы с осевой подачей	│ и́ (по оси «Z») «плунжерное фре	зеровани	ie»						
Back and Forth Cutter - MPF, PFC		Переферийное фрезерование Переферийное фрезерование	Чистовая обработка вертикальных плоскостей с высокой производительностью. Рабочая подача «вверх-вниз», «вправо-влево»	Торце- вые фрезы Ø50-80 Смен- ные головки Ø30-40	Б-29		+	+		+	

						Обра	абать	іваем	ьіе м	атери	иалы
Серия	Пластины режущие Форма	Вид обработки	Описание	Диапазон диаметров	Страница	Легкие сплавы	Чугуны	Стали	Нержавеющие стали	Закаленные стали	Труднообраба- тываемые
	Фрезы д	цля работы со сверхвысо	окими подачами (High Feed техн	ология)							
High Feed Die Master - SKS Extreme, SKS G2, Multi Extreme		Фрезерование Профильное фрезерование		Конце- вые фрезы Ø32-66							
		Фрезерование карманов Винтовая интерполяция	Новое поколение фрез SKS. Самая высокопроизводительная черновая фреза DiJet. 2-х сторонние пластины.	Торце- вые фрезы Ø40-160	Б-31		+	+	+	+	+
Ap = 3 мм Fz = 2 мм/зуб		Фрезерование уступов Фрезерование с соевой подачей		Смен- ные головки Ø25-42							
SKS PT Ap = 2 mm	FINIST	Фрезерование плоскости Фрезерование уступов Фрезерование интерполяция Фрезерование с осевой подачей	Торцевые фрезы для обработки по технологии HIGH FEED	Ø50 63 80 100 125 160 200	Б-41	+	+	+	+		+
7.40 2.11111		Миотофункциональны	a wheat i oginato nashanana								
Quick and Mini - QXP, PME, MQX, MPM, MQT QM Max GII - GMX, MXG	Для высоких подач Для фрезерования уступов Для чистовой	Фрезерование Плосильное фрезерование Фрезерование карманов	е фрезы общего назначения. Новое поколение фрез для работы с высокой подачей (high feed). Компактная форма режущих пластин позволяет разместить их большее количество, что даёт возможность ещё больше увеличить минутную подачу. На один корпус устанавливаются пластины для работы с	Торце- вые фрезы Ø40-66 Конце- вые фрезы Ø10-32	Б-43	+	+	+	+	+	+
V = +6° QM Max QM Mill Ap = 1 мм Ap = 0.4 мм Fz = 1.2 мм/зуб Fz = 0.9 мм/зуб	обработки стенок	Фрезерование уступов Фрезерование пазов	высокимими подачами и для традиционного фрезерования.	Смен- ные головки Ø10-42							
Ap = 3-5 мм Ae = 1/3D Длина рабочей части Lo = 10-15 мм		Фрезерование плоскости Фрезерование уступов Фрезерование пазов	Универсальные фрезы для чистовой и получерновой обработок. Низкие усилия резания, хороший стружкоотвод.	Смен- ные головки Ø16-40	Б-53	+	+	+	+	+	

						Обра	бать	іваем	ь е м		иалы
Серия	Пластины режущие Форма	Вид обработки	Описание	Диапазон диаметров	Страница	Легкие сплавы	Чугуны	Стали	Нержавеющие стали	Закаленные стали	Труднообраба- тываемые
		Многофункциональны	е фрезы общего назначения.								
Shoulder Extreme - EXSAP, MSX		фрезерование плоскости фрезерование уступов	Универсальные высокопроизводительные	Кон- цевые фрезы Ø16-32							
	6	Фрезерование винтовая интерполяция	фрезы для черновой и получистовой обработки уступов и плоскостей. Низкие усилия резания, высокая точность и чистота обработки.	Насад- ные фрезы Ø50-125	Б-54		+	+	+	+	+
Ap = 10 мм Ae ≤ 1D		Фрезерование с осевой подачей	Пластины с 4 режущими кромками.	Смен- ные головки Ø16-40							
Shoulder SIX - EXSIX Ap = 10 mm		Фрезерование плоскости Фрезерование уступов Фрезерование с совеой подачей	Универсальные высокопроизводительные фрезы для черновой и получистовой обработки уступов и плоскостей. Низкие усилия резания, высокая точность и чистота обработки. Пластины с 6 режущими кромками.	Насад- ные фрезы Ø50-160	Б-57		+	+	+	+	
Ap = 10 MM Ae ≤ 1D Super End Chipper - SEC, MEC											
Ap = 3-10 мм Ae = 1/2D Длина рабочей части Lo~D		Фрезерование Профильное фрезерование Фрезерование Фрезерование Винтовая интерполяция Цекование	Конструкция с центральной режущей кромкой позволяет производить операции с врезанием и засверливанием. Высокая универсальность.	Концевые фрезы Ø16-33	Б-58	+	+	+	+	+	
Aero Chipper - ALX, MAL Ap = 3-8 мм, Ae ≤ 2/3D Длина рабочей части Lo = 15 мм		Фрезерование Орезерование Фрезерование Фрезерование Фрезерование Винтовая интерполяция Орезерование Цекование	Специализированная конструкция разработанная для авиакосмической отрасли. Предназначена для обработки сплавов на основе титана и алюминия. Полированная пластина с острокромочной геометрией для алюминия. Пластина из высокопрочного сплава с покрытием для титана и нержавеющей стали.	Концевые фрезы Ø20-40 Тор-цевые фрезы Ø50 63 Сменные головки Ø20-40	Б-63	+		+	+		+

						Обра	абать	іваем	ые м	атери	
Серия	Пластины режущие Форма	Вид обработки	Описание	Диапазон диаметров	Страница	Легкие сплавы	Чугуны	Стали	Нержавеющие стали	Закаленные стали	Труднообраба- тываемые
		Многофункциональны	е фрезы общего назначения.								
FAP90		Фрезерование плоскости Фрезерование уступов	Универсальная серия для	Торце- вые фрезы Ø40-80	Б-65	+	+	+	+		+
AP*1135* - Ap = 10 мм AP*1604* - Ap = 15 мм ψ = 90°	FINIST	Фреверование пазов	профильного фрезерования	Конце- вые фрезы Ø16-40	5 00	·					
FAP90 G2	20	Фрезерование плоскости Фрезерование уступов	Универсальная серия для	Конце- вые фрезы Ø16-26	Б-67	+	+	+	+		+
Ap = 10 мм ψ = 90°	FINIST	Винтовая интерполяция Фрезерование пазов Фрезерование с осевой подачей	профильного фрезерования	Мо- дульная головка Ø17-26							
WTRS Trigon Power Shoulder	۵	Фрезерование плоскости Фрезерование уступов	Высокоэффективная черновая и получистовая обработка	Торце- вые фрезы Ø40-200	Б-69	+	+	+	+		+
Ар = 8 мм	FINIST	Фрезерование с соевой подачей	уступов, плоскостей и пазов	Конце- вые фрезы Ø20-40	B-03	·	·	•	·		
Super Die Master - HDM, SDH		Фрезерование плосиоти Фрезерование фрезерование Фрезерование Фрезерование	Широкоуниверсальные фрезы от чистовой до получерновой обработок. Предпочтительны для фрезерования пазов,	Торце- вые фрезы Ø50-80	Б-71	+	+	+	+	+	+
 \(\chi = +8^\) \(\text{J} \) \(\text{J} \) \(\text{T} \) \(\text{T} \) \(\text{M} \) \(\text{T} \) \(\text{T} \) \(\text{M} \) \(\text{T} \) \(\text{T} \) \(\text{T} \) \(\text{M} \) \(\text{T} \) \(\text{T} \) \(\text{M} \) \(\text{T} \) \(\text{T} \) \(\text{M} \) \(\text{T} \) \(\text{T} \) \(\text{T} \) \(\text{M} \) \(\text{T} \) \(\text{T} \) \(\text{M} \) \(\text{T} \) \(\text{T} \) \(\text{M} \) \(\text{M} \) \(\text{T} \) \(\text{M} \) \(\		Фрезерование карманов Фрезерование уступов Винтовая интерполяция	карманов, фасонного фрезерования. Возможна работа с большими вылетами.	Смен- ные головки Ø15-42							

						Обра	абать	іваем	ь е м	атери	иалы
Серия	Пластины режущие Форма	Вид обработки	Описание	Диапазон диаметров	Страница	Легкие сплавы	Чугуны	Стали	Нержавеющие стали	Закаленные стали	Труднообраба- тываемые
		Многофункциональны	е фрезы общего назначения.								
Blade Chipper - TDM, MTD			Специализированная	Торце- вые фрезы Ø40-52							
	0	Фрезерование плоскости Профильное фрезерование	конструкция для обработки нержавеющей стали и лопаток турбин. Индексируемый поворот пластин с защитой от	Конце- вые фрезы Ø25-32	Б-75				+		
V = +10°, +15° для торцевых фрез; Ар = 0,5-2,5 мм при размере пластины 10 мм Ар = 0,5-3 мм при размере пластины 12 мм		Фрезерование карманов	проворота во время работы	Смен- ные головки Ø25-32							
Extreme Diemate - EXTDM / MTX Для торцевых фрез		Фрезерование Профильное фрезерование	Универсальные фрезы для обработки нержавеющих сталей. Двухсторонняя пластина с винтовой режущей кромкой, индексируемым поворотом и защитой от	Торце- вые фрезы Ø50-66	Б-77				+		
Ар = 0,5-3,0 мм при размере фрезы 50-66 мм Ар = 0,5-2,5 мм при размере фрезы 32-40 мм		Фрезерование карманов Винтовая интерполяция	проворота во время работы.	ные головки Ø32-40							
PM01 Profiling Master		Фрезерование Профильное фрезерование	Универсальная серия	Торце- вые фрезы Ø50-100							
Для торцевых фрез Ар = 5 мм при размере пластины 10 мм Ар = 6 мм при размере пластины 12 мм	FINIST	Фрезерование карманов Фрезерование уступов Винтовая интерполяция	для профильного фрезерования	Конце- вые фрезы Ø25-40	Б-78	+	+	+	+		+
OSMP OktoSurf Mill Ap = 4,3 mm	FINIST	Фрезерование плосхости Фрезерование карманов Винтовая интерполяция	Многофункциональная фреза, обработка плоскостей и работа с врезанием	Ø50 63 80 100 125 160 200	Б-80	+	+	+	+		+
S-Head - SMSA, SMSR, SMAL, STLP		Фрезерование плоскости Профильное фрезерование									
		Фрезерование фрезерование пазов	Твердосплавные фрезерные головки. Эконом вариант замены цельнотвердосплавных фрез больших диаметров	Ø16-32	Б-81	+		+	+	+	+
Торцевая обработка плоскости: $Ap \le 0.03Dc; Ae \le Dc$ Обработка стенок переферией: $Ap \le Dc; Ae \le 0.03Dc$ Длина рабочей части: $Lo = 16-32$ мм		Фрезерование Винтовая интерполяция Цекование									

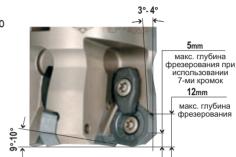
	Пластины режущие Вид обработки Описание				Обра	абать	іваем	ьіе м	атері	иалы	
Серия	Пластины режущие Форма	Вид обработки	Описание	Диапазон диаметров	Страница	Легкие сплавы	Чугуны	Стали	Нержавеющие стали	Закаленные стали	Труднообраба- тываемые
		Чистовые	концевые фрезы								
Mirror Ball - BNM, MBX	7	Профильное фрезерование пазов		Конце- вые фрезы Ø6-32	Б-85	+	+	+	+	+	
Ap = 0.02D mm Ae = 0,025D mm	1	Фрезерование карманов	Чистовая обработка сложных криволинейных контуров, карманов и т.п. методом	Смен- ные головки Ø10-32							
Mirror Radius - RNM, MRX		Фрезерование Профильное фрезерование Фрезерование Фрезерование карманов Оттор об	построчного фрезерования с малыми глубиной и шириной фрезерования.	Концевые фрезы Ø6-32 Сменные головки Ø10-32	Б-95	+	+	+	+	+	+
Ар = 0.3-0.8D мм Ae = 0,3-0.5D мм Under Cutter - DUM				210 02							
Ар = 1D мм		Фрезерование поднутрения	Концевые фрезы для фрезерования стенок с поднутрением на вырезных и разделительных штампах.	Конце- вые фрезы Ø25 32 36 40 50	Б-104		+	+			
Ае = 1-2 мм		Vaa.									
Roughing Chipper - RFC		концевые	черновые фрезы								
Ар ≤ длины рабочей части Ае ≤ 0,1D		Фрезерование уступов Фрезерование пазов	Черновые торцово- цилиндрические фрезы с винтовым расположением режущих пластин «кукурузные фрезы».	Насад- ные фрезы Ø50 63 80	Б-106		+	+			

						Обра	бать	іваем	ь е м	атері	иалы
Серия	Пластины режущие Форма	Вид обработки	Описание	Диапазон диаметров	Страница	Легкие сплавы	Чугуны	Стали	Нержавеющие стали	Закаленные стали	Труднообраба- тываемые
	ı	Концевые	черновые фрезы								
Swing Ball - SWB, SWBX, MSW, MSWX		Профильное фрезерование уступов	Работа с большими припусками при профильной обработке. Исполнение хвостовика: Цилиндр, Морзе	Конце- вые фрезы Ø16-50	Б-107		+	+	+	+	
Ар = 16-40 мм В зависимости от диаметра Ae ≤ 0,2D		Фрезерование пазов		Смен- ные головки Ø16-32							
Wild Radius - WDR		Фрезерование Профильное фрезерование	Высокопроизводительное фрезерование при черновой	Торце- вые фрезы Ø 50-125	5-113		+	+	+	+	
Ар тах = 18 мм		Фрезерование карманов Фрезерование уступов Винтовая интерполяция	фрезерование при черновой обработке	Конце- вые фрезы Ø40	р-113		+	+	+	+	

Cepuя HEPTAMILL (Ø 50-200 мм)

Самая высокопроизводительная фреза из линейки черновых фрез Dijet. Первый выбор для чернового фрезерования при глубине обработки не более 3D.

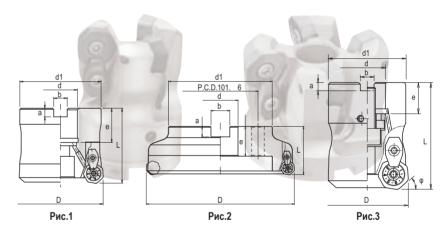
Основное назначение - обработка сталей, в том числе закаленных.


Основная идеология, заложенная в конструкции: Сочетание технологии работы с высокими подачами с классической схемой фрезерования. Максимальная производительность при жесткой технологической системе и минимальных вылетах. Фрезы серии HEPTAMILL показывают производительность в 1.5-2 раза больше, чем остальные черновые фрезы производства Dijet.

- Широкоуниверсальная фреза позволяет производить все основные виды фрезерных работ: обработка уступов, закрытых пазов (карманов), фасонных поверхностей, имеет возможность врезания под углом и может работать по схеме винтовой интерполяции и с вертикальной подачей (т.н. плунжерное фрезерование).
- Семигранная режущая пластина, кроме выигрыша в количестве кромок, по сравнению с традиционными 4-х гранными пластинами, обеспечивает очень удачные в плане резания инструментальные углы. Главный угол в плане = 42° (в плоскости X, Y) и большие вспомогательные

углы позволяют работать с врезанием и являются достаточными при обработке вертикальных стенок (плоскость Z).

Система двойного закрепления режущих пластин обеспечивает высокую


На фрезы данной серии возможна установка зачистных пластин, применение которых позволяет ещё больше увеличить скорость подачи.

Торцовые фрезы НЕР

жесткость инструмента.

- Снижение усилия резания при возможности сохранения высоких подач. Пластины имеют 7 режущих кромок. Применение корпуса G-Body повышает стойкость пластин на 30%.
- Максимальная глубина фрезерования: Ар = 12 мм; При исп. 7-ми кромок: Ар = 5 мм. Главный угол в плане: φ = 42°; Угол наклона: ¥ = +8° Угол разворота: λ: -2°
- Корпус серии G-Body доп. информацию см. на стр. Б-11

Обозначение		Рис.	D, мм	L,	d, мм	d1, мм	а,	b, мм	е,	Z	Пластина	Винт	Ключ	Прихват
HEP-3050R-08-22*	0	3	50	65	22	47	6,3	10,4	19	3				
HEP-4063R-08-22	0	1	63	50	22	60	6,3	10,4	20	4				
HEP-4063R-08-27*	0	1	63	50	27	60	7	12,4	22	4	XDMW080620ZTR			
HEP-5080R-08-27*	0	1	80	55	27	76	7	12,4	22	5	XDMT080620ZER XDMW080635ZTR-S	DSW-4512H	A-20	DCM-17
HEP-6100R-08-32*	0	1	100	70	32	96	8	14,4	32	6	XDMW080708ZER	DSW-4312H	A-20	DCIVI-17
HEP-7125R-08-40*	0	1	125	70	40	100	9	16,4	35	7	XDMT080620ZER-ML			
HEP-8160R-08-40*	0	1	160	70	40	100	9	16,4	35	8				
HEP-9200R-08-60	0	2	200	65	60	140	14,3	25,4	40	9				

^{*} Установочный винт входит в комплект поставки, во всех остальных случаях используется штатный винт фрезерной оправки

Пластины режущие

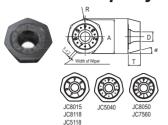


Рис.1 Без стружколома

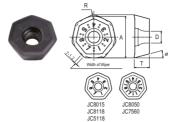


Рис.2 Со стружколомом

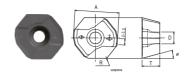
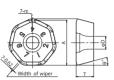



Рис.3 Пластины с зачистной кромкой (Wiper)

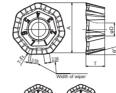


Рис.4 Без стружколома

Рис.5 Со стружколомом

Обозначение	Due	A,	T,	R,	_			С покр	ытием		
Обозначение	Рис.	MM	MM	MM	α	JC8015	JC5040	JC8118	JC7550	JC7560	JC8050
XDMW080620ZTR	1	17,5	6,35	2	15°	0	0	0		0	0
XDMT080620ZER	2	17,5	6,35	2	15°	0		0		0	0
XDMT080708ZER (Wiper)	3	18,6	7,5	0,8	15°	0					
XDMW080635ZTR-S	4	17,5	6,35	3,5	15°	0					
XDMT080620ZER-ML	5	17,3	6,5	2	15°			0		0	

Информацию о сплавах см. стр.Б-122-124

Рекомендации по использованию зачистных пластин (Wiper)

- Установить пластину согласно метке (⇒)
- Зачистная пластина двухсторонняя
- Количество зачистных пластин назначается в зависимости от значения оборотной подачи см. таблицу
- Следуйте рекомендациям по выбору режимов резания для зачистных пластин (Wiper)

Fo =
$$\frac{F (MM/MИH)}{n (OG/MИH)} (MM/OG)$$

Fo (мм/об)	Количество пластин (Wiper)
1.2мм < Fo (мм/об) ≤3 мм	1
3мм < Fo (мм/об) ≤ 6мм	2
6мм < Fo (мм/об) ≤ 9мм	3
9мм < Fo (мм/об) ≤ 12мм	4

В случае, когда подача на оборот Fo(мм/об.) > 1.2 мм или чистота поверхности Rz ≤ 12.5 мкм, рекомендовано использование зачистных пластины "Wiper".

G-Body - новая линейка корпусов фрез и фрезерных оправок.

В отличие от традиционных, корпуса инструментов G-BODY изготовлены из инструментальной стали с высокой теплостойкостью и прошли химико-термическую обработку - азотирование. Твердость поверхностного слоя составляет 65 HRc. В результате XTO у корпусов G-BODY повысились эксплуатационные свойства. Значительно увеличился срок службы узла крепления режущих пластин, возросла износоустойчивость и коррозионная стойкость. Повысилась теплостойкость и виброустойчивость. Кроме того, у корпусов G-BODY практически отсутствует эффект «приваривания» стружки. G-BODY занимает промежуточное место между корпусами из твёрдого сплава и традиционными стальными корпусами с объёмной закалкой. При этом цена оправок и корпусов G-BODY не выше, чем цена инструментов, изготовленных по традиционной технологии.

[•] складская программа; ○ производственная программа; □ изготавливается под заказ

Рекомендации по выбору режимов резания

Базовые режимы резания Для торцевых фрез серии HEP

Обрабатываемый материал	Твердость	Пластина	Ар, мм	V, м/мин	Fz, мм/зуб
Углеродистые стали (сталь 50)	менее 250НВ	XDMT(-ML)-JC7560 (XDMW-JC5040)	2-4	110-140	0,5-0,8
Штамповые стали	30-36 HRC	XDMT(-ML)-JC7560 (XDMT-JC8118) (XDMW-JC5040)	2-3	110-140	0,4-0,7
Штамповые стали	38-43 HRC	XDMT-JC8118 (XDMT-JC8015)	2-3	75-100	0,4-0,7
Штамповые стали (4Х5МФ1С)	менее 255НВ	XDMT(-ML)-JC7560 (XDMW-JC5040)	2-3	110-140	0,4-0,7
Закаленные штамповые стали (4Х5МФ1С)	40-50HRC	XDMW-JC8118 (XDMW-JC8015)	1,5-2,5	55-70	0,3-0,4
Серые (Сч25,Сч30) и высокопрочные чугуны (Вч60-2, Вч79-2)	менее 300НВ	XDMW-JC8015 (XDMW(-S)-JC8015)	2,5-5	110-140	0,7-1
Высокопроч. чугуны (Вч60-2, Вч79-2)	менее 300НВ	XDMW-JC8118 (XDMW-JC8015) (XDMW(-S)-JC8015)	1,5-4	95-120	0,5-0,8
Нержавеющие стали (08Х18Н10, 1.4401)	менее 250НВ	XDMT(-ML)-JC7560 (XDMT-JC8050)	2-4	95-125	0,3-0,5

① При обработке с ударом скорость резания и подача должна снижаться примерно на 20%.
Окончательные режимы резания определяются в конкретных условиях, в зависимости от жесткости технологической системы. Более подробную информацию по режимам резания смотрите на сайте www.s-t-group.com в каталоге DIJET.

Для профильного фрезерования фрезами НЕР

- ✓ Рекомендуется применять попутное фрезерование и, следовательно, движение инструмента по своей траектории должно осуществляться против часовой стрелки.
- ✓ Глубина врезания за один оборот фрезы по траектории не должна превышать максимальную глубину резания, рекомендуемую для данной фрезы.
- ✓ При фрезеровании с врезанием и винтовой интерполяцией необходимо уменьшить значение подачи на 30% и более по сравнению с рекомендованным значением в таблице каталога.
- ✓ При фрезеровании с осевой подачей необходимо уменьшить подачу на 50% и более от рекомендованного значения.

			Фрезе	ерование с вре	занием (Ар = 5мі	м)	Фрезерование с винт	овой интерполяцией
Обозначение	Ø инструмента I, мм	Эффективный рабочий Ø D _{1,} мм	Кинематический вспомогательный угол при врезании	Общая длина резания торцевой кромкой	Макс. угол врезания: Ө°	Общая длина резания: L, мм	Мин. Ø обрабатываемого отверстия: Dh, мм	Макс. Ø обрабатываемого отверстия: Dh, мм
HEP-3050	50	36.7	1° 50'	156	9°	31	74	96
HEP-4063	63	49.5	1° 25'	202	7°	40	100	122
HEP-5080	80	66.6	1°	286	5°	57	134	156
HEP-6100	100	86.6	0° 45'	382	3° 30'	81	174	196
HEP-7125	125	111.6	0° 35'	491	2° 30'	114	224	246
HEP-8160	160	146.6	0° 25'	687	2°	143	294	316
HEP-9200	200	186.6	0° 20'	860	1° 30'	190	374	396

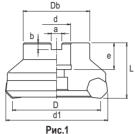
Поправочные коэффициенты на глубину резания (Ар) и подачу (F)

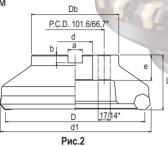
_			Диам	етр, D			
Вылет, мм	50	-63	80-	100	125-200		
WIN	Ар	F	Ар	F	Ap F		
≤100	1	1	1	1	1	1	
≤150	0,9	0,9	1	0,9	1	0,9	
≤200	0,75	0,75	1	0,8	1	0,8	
≤250	0,6	0,6	0,9	0,6	0,9	0,6	
≤300	0,5	0,6	0,6	0,6	0,75	0,6	

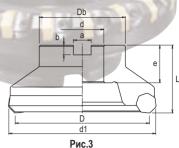
При затуплении режущей кромки пластину следует повернуть против часовой стрелки.

У диаметра 50 мм Крепежный болт находится внутри фрезы.

ullet складская программа; \circ производственная программа; \Box изготавливается под заказ

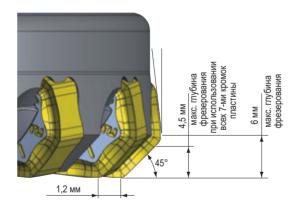

Серия Nega-Hepta Mill (Ø 100-250 мм)


Торцовые фрезы NHP


✓ Фрезерование стали и чугунов, мелкий шаг зубьев, высокая минутная подача, двухсторонние пластины.
 Высокоэффективное фрезерование плоскостей на мощном

и жестком оборудовании.

Максимальная глубина фрезерования: Ар = 6 мм; При исп. 7-ми кромок: Ар = 4,5 мм; Главный угол в плане: φ = 45°; Угол наклона: γ = -6°; Угол разворота: λ: -4°


Мелкий шаг пластин

Обозначение		Рис.	D, мм	Db, мм	L,	d, MM	d1, мм	а, мм	b, мм	е,	Z	Пластина	Клин	Винт	Ключ
NHP-14100R-08-32	0	2	100	70	50	32	112,4	14,4	8	32	14				
NHP-18125R-08-40	0	2	125	80	63	40	137,4	16,4	9	35	18				
NHP-22160R-08-40*	0	2	160	100	63	40	172,4	16,4	9	29	22	XNMU0806AEN(R)	70710	LS-110	A-15T
NHP-28200R-08-60	0	3	200	140	63	60	212,4	25,4	14,3	40	28				
NHP-36250R-08-60	0	3	250	160	63	60	262,4	25,4	14,3	40	36				

Стандартный шаг пластин

Обозначение		Рис.	D, мм	Db, мм	L,	d, мм	d1, мм	а,	b, мм	е,	Z	Пластина	Клин	Винт	Ключ
NHP-5063R-08-22	0	1	63	60	50	22	75,4	10,4	6,3	20	5				
NHP-6080R-08-27	0	1	80	60	50	27	92,4	12,4	7	22	6				
NHP-8100R-08-32	0	2	100	70	50	32	112,4	14,4	8	32	8	XNMU0806AEN(R)	70710	LS-110	A-15T
NHP-8125R-08-40	0	2	125	80	63	40	137,4	16,4	9	35	8				
NHP-10160R-08-40*	0	2	160	100	63	40	172,4	16,4	9	29	10				

✓ Положительная геометрия обеспечивается стружечными канавками, за счет чего снижаются силы резания. Пластины 2-х сторонние, 14 режущих кромок. За счет наличия вспомогательных углов возможно фрезерование как с горизонтальной, так и с вертикальной подачей.

_	Me	ткий шаг	Станда	артный шаг
D, мм	Кол-во пластин, Z	Потребляемая мощность Р, кВт	Кол-во пластин, Z	Потребляемая мощность Р, кВт
63	-	-	5	6,8
80	-	-	6	8,1
100	14	18,9	8	10,8
125	18	24,3	8	10,8
160	22	29,7	10	13,5
200	28	37,8	-	-
250	36	48,6	-	-

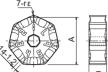
✓ Новое CVD покрытие сплава "JC608X" (К10-К20)

JC608X - новый сплав с покрытием, нанесенным методом CVD. Предназначен для обработки чугунов.

Износостойкость нового сплава JC608X существенно выше за счет специального многослойного покрытия и новой основы, имеющей повышенную сопротивляемость к пластической деформации.

Первый слой покрытия из титанового сплава обеспечивает высокую адгезию второго слоя, представляющего собой композиционный материал, в основе которого высокотемпературные окислы алюминия с высоким содержанием α-Al2O3. Этот по своей сути, керамический слой обладает высокой тепло- и износостойкостью, а также химическоой устойчивостью к окислительным процессам, возникающим при высоких температурах в зоне резания.

Поверх нанесён ещё один слой, обеспечивающий низкую шероховатость переднней поверхности, что существенно облегчает сход стружки и снижает склоность к наростообразованию.


• складская программа; ○ производственная программа; □ изготавливается под заказ

Пластины режущие

Режущие 2-х сторонние пластины, 14 режущих кромок

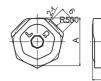


Рис.4 Сталь, Чугун

Рис.1 Чугун

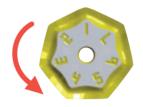

Рис.2 Сталь

Рис.3 Сталь, Чугун

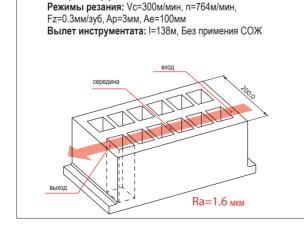
Обозначение	Puc. A, MM T, MM R, MM			Маркас	плавов		Обрабатываемый		
Ооозначение	РИС.	A, MM	I, MM	K, MM	JC608X	(JC5118 JC8050 DH1		DH103	материал
XNMU080610AEN	1	17,5	6,5	1	0	-	-	-	Чугун
XHMU080610AER-PM	2	17,5	6,5	1	-	0	0	-	Сталь, Нержав. сталь
XNMU080610AEN-KL	3	17,5	6,5	1	-	0	0	-	Чугун, Сталь, Нержав. сталь
XNHU0806AEN-W	4	17,5	6,5	1	-	-	-	0	Чугун, Сталь, Нержав. сталь

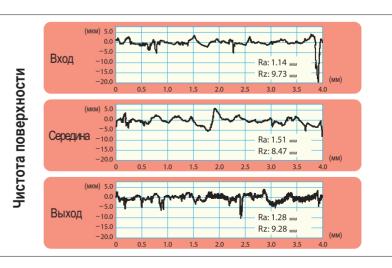
Новое покрытие CVD сплава "ЈС608Х"

При использовании левосторонней фрезы рекомендуется при смене режущей кромки повернуть пластину по часовой стрелке, при правосторонней - против часовой стрелки.

Пластины с положительным углом имеют 14 режущих кромок при использовании с обоих сторон (пластины могут быть использованы в право- и левосторонних фрезах).

Рекомендации по выбору режимов резания


Базовые режимы резания Для торцевых фрез серии NHP

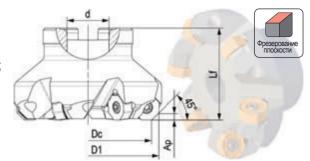

ISO	Обрабатываемый материал	Твердость	Сплав	Ар, мм	Vc, м/мин	Fz, мм/зуб
	Низкоуглеродистые стали	менее 180НВ	105440	До 3,5 мм	180 (140-220)	0,3 (0,1-0,5)
Р	Конструкционные стали	менее 250НВ	JC5118 (JC8050)	До 3,5 мм	160 (120-200)	0,3 (0,1-0,5)
F	MUOTOWA OUTOFF HILLO MUUTOMFOOD LO OTOFFM	менее 255НВ	(000000)	До 3 мм	140 (100-180)	0,3 (0,1-0,5)
	Инструментальные и штамповые стали	30-43 HRC	JC5118 (JC8050)	До 3 мм	80 (60-100)	0,15 (0,1-0,3)
M	Нержавеющие стали (08Х18Н10)	менее 250НВ	JC8050	До 3 мм	130 (100-160)	0,2 (0,1-0,4)
	Серые чугуны (Сч25,Сч30)	менее 300НВ		До 3 мм	200 (150-250)	0,3 (0,1-1,0)
K	Серые чугуны (Сч25,Сч30)	Menee 300ND	JC608X	3 ~ 6	200 (150-250)	0,3 (0,1-0,5)
K	Pulcovorpoulli lo 18/17/11 1 (Pu60 2 Pu70 2)	менее 300НВ	30000	До 3 мм	150 (120-180)	0,2 (0,1-0,8)
	Высокопрочные чугуны (Вч60-2, Вч79-2)	WIEHEE JUUITD		3 ~ 6	150 (120-180)	0,2 (0,1-0,4)

① Режимы резания должны быть скорректированы в соответствии с типом и условиями обработки

Пример обработки

Материал: Чугун СЧ30

• складская программа; ○ производственная программа; □ изготавливается под заказ



Серия OSMN OktoSurf Power Mill

Торцевые фрезы OSMN Ø 53-200 мм

- ✓ Лучший выбор для обработки плоскостей с небольшими припусками;
- ✓ Высокая экономичность благодаря 16-ти режущим кромкам;
- ✓ Криволинейная поверхность передней поверхности режущих пластин выполнена таким образом, что при установке в гнездо корпуса фрезы, у пластины кроме заднего угла, также появляется незначительный вспомогательный угол и выглаживающая площадка (bs).

Максимальная глубина фрезерования: Ар = 3,2 - 5,5 мм

Обозначение		Dс, мм	D1, мм	d, мм	Lf, MM	Ар, мм	Z	Пластина	Винт	Ключ
OSMN-A22-50-5-ON05	0	53	64,6	22	48,4	3,2	5			
OSMN-A22-63-6-0N05	0	66	77,6	22	48,4	3,2	6			
OSMN-A27-80-7-0N05	0	83	94,6	27	48,4	3,2	7			
OSMN-B32-100-8-0N05	0	103	114,6	32	48,4	3,2	8	ON*0504*	SA0411	T15P
OSMN-B40-125-10-0N05	0	128	139,6	40	61,4	3,2	10			
OSMN-C40-160-12-0N05	0	163	174,6	40	61,4	3,2	12			
OSMN-C60-200-16-0N05	0	203	214,6	60	61,4	3,2	16			
OSMN-A22-63-6-0N07	0	63	74,4	20	50	4,3	6			
OSMN-A27-80-7-0N07	0	80	91,4	27	50	4,3	7			
OSMN-B32-100-8-0N07	0	100	111,4	32	50	4,3	8	ON*0705*	SA0512	T20P
OSMN-B40-125-10-0N07	0	125	136,4	40	63	4,3	10	ON 0703	SA0512	1206
OSMN-C40-160-12-0N07	0	160	171,4	40	63	4,3	12			
OSMN-C60-200-16-0N07	0	200	211,4	60	63	4,3	16			
OSMN-A22-63-5-0N09	0	63	76,2	22	50	5,5	5			
OSMN-A27-80-6-0N09	0	80	93,2	27	50	5,5	6			
OSMN-B32-100-7-0N09	0	100	113,2	32	50	5,5	7	ON*0906*	SA0512	T20P
OSMN-B40-125-8-0N09	0	125	138,2	40	63	5,5	8	OIN 0300	3AU312	1205
OSMN-C40-160-10-0N09	0	160	173,2	40	63	5,5	10			
OSMN-C60-200-12-0N09	0	200	213,2	60	63	5,5	12			

Пластины режущие

	Р	+	+	+	+	±	+
Mble	М	+	+	+		+	+
иаль	K	±			+		
Обрабатываемые материалы	N	±	±	±	±	+	±
06pi	S		±	±		+	±
	Н						

		Размеры		PVD						
Обозначение	IC	S	BS	PY2571	PY3570	PY2070	PD1572	PS3070	PY2570	
ONMX0504ANN-UL	13	5,9	0,8	_	•	•		0	•	
ONMX0504ANN-UM	13	5,9	0,4	0		•	•			
ONMX070508-UM	17,5	6,3	-				0	•		
ONMX0906ANN-UL	20,5	7,2	1,2						•	
ONMX0906ANN-UM	20,5	7,2	1,2	0	0		0	0	0	

Рекомендации по выбору режимов резания

Базовые режимы резания

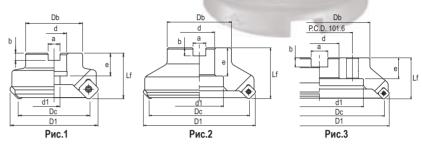
Обрабатываемый материал	V, м/мин	Fz, мм/зуб
Углеродистые стали	200-300	0,1-0,4
Литейные стали	200-300	0,1-0,4
Стали для прессформ	150-280	0,1-0,4
Чугуны (СЧ, ВЧ)	150-280	0,1-0,5
Нержавеющие стали	110-250	0,1-0,3
Жаропрочные сплавы	20-40	0,1-0,3

Пример использования OSMN OktoSurf Power Mill

Результа	a٦
Lesamen	a

Обрабатывался фланец. Фрезерование велось по литьевой корке со следами отбела. Фреза показала себя хорошо. При достаточно высоких режимах обработки износ пластины в пределах нормы. За счет пластины с 16-тью режущими кромками фреза показывает высокий экономическкий эффект.

	Наименование	Отливка корпуса насоса
Обрабатываемое изделие	Материал	B440
подолио	Твердость	250 – 300 HB
Инотрумент	Корпус фрезы	OSMN-B32-100-8-0N07
Инструмент	Пластины	ONMU070508-OM OP2202
	Скорость резания, Vc	250 м/мин
	Обороты, п	796 об/мин
	Минутная подача, vf	2546мм/мин
Условия	Подача на зуб, fz	0,4 мм
обработки	Глубина резания, Ар	2 мм
-	Ширина фрезерования, Ае	80 мм (max)
	Наличие СОТС	без СОЖ
	Станок	Горизонтальный ОЦ


(!) Корпус серии (*G-Body* доп. информацию см. на стр. Б-11

Серия SSE45 Cutter (Ø 50-125 мм)

Торцовые фрезы SSE45

- Угол в плане 45°, торцовые фрезы для обработки всех типов материалов.
- ✓ Острый режущий клин в сочетании с зачистной кромкой позволяют произвести высокопроизводительную обработку с низкими усилиями резания и получать хорошую шероховатость обработанной поверхности.
- ✓ Применение корпуса серии G-Body, позволяет получать хорошее качество обработанной поверхности и увеличить стойкость режущих пластин.
- ✓ Твердосплавные подкладные пластины предотвращают повреждение корпуса фрезы в случае поломки режущей пластины.
- Максимальная глубина фрезерования: Ар = 6 мм; Главный угол в плане: φ = 45°; Угол наклона: γ = +20°; Угол разворота: λ: -15° -8°

Обозначение	е	Рис.	Dc,	D1, мм	Db, мм	Lf,	d, мм	d1, мм	а, мм	b, мм	е,	Z	Пластина	Винт пластины/ Винт подкладной пластины	Ключ пластины/ Ключ подкладной пластины	Подкладная пластина
SSE45-4050R-22	0	1	50	63	45	40	22	10,4	10,4	6,3	20	4				
SSE45-5063R-22	0	1	63	76,1	50	40	22	10,4	10,4	6,3	20	5	SEMT13T3AGSN			
SSE45-6080R-27	0	1	80	93,1	56	50	27	13,5	12,4	7	22	6	XEHW13T3AGSN-W (Wiper)	TSW-3512H SSW-535	A15-T LW-035	SM-SE13
SSE45-7100R-32	0	1	100	113,3	70	50	32	17,5	14,4	8	25	7	SEGT13T3AGFN-AL	0011 000	LVV 000	
SSE45-8125R-40	0	2	125	138,3	80	63	40	60	16,4	9	32	8				

Пластины режущие

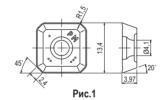


Рис.2

При работе с подачами свыше 2 мм/об. применяйте зачистную пластину XEHW13T3AGSN-W.

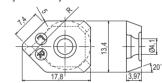


Рис.3

Обозначение	Рис.		С покры	тием PVD		С покрытием CVD	Полированная
Ооозначение	Рис.	JC5040	DH103	JC8015	JC8050	JC605W	FZ05
SEMT13T3AGSN-PM	1	0		0	0		
SEMT13T3AGSN-KM	1					0	
XEHW13T3AGSN-W (Wiper)	3		0				
SEGT13T3AGFN-AL	2						0

Информацию о сплавах см. стр.Б-121-123

Рекомендации по выбору режимов резания

Базовые режимы резания для торцовых фрез серии SSE45

Обрабатываемый материал	Твердость	Сплав	Vс, м/мин	Fz, мм/зуб
Низкоуглеродистые стали	До 180НВ	JC5040 (JC8050)	250 (200-300)	0.2 (0.1-0.3)
Углеродистые стали	До 250НВ	JC5040 (JC8050)	220 (170-250)	0.2 (0.1-0.3)
Инструментальные и штамповые стали	До 255НВ	JC5040	120 (100-150)	0.2 (0.1-0.3)
Нержавеющие стали	До 250НВ	JC8050 (JC8015)	220 (170-250)	0.2 (0.1-0.3)
Серые чугуны	До 300НВ	JC605W (JC8015)	200 (150-250)	0.2 (0.1-0.3)
Высокопрочные чугуны	До 300НВ	JC8015	150 (120-180)	0.2 (0.1-0.3)
Закаленные стали	40-55HRC	JC8015	80 (60-100)	0.15 (0.1-0.2)
Алюминиевые сплавы	-	FZ05	500 (300-800)	0.2 (0.1-0.3)

ullet складская программа; \circ производственная программа; \Box изготавливается под заказ

D1

Серия SM45 SurfaceMill45

Торцевые фрезы SM45 45 Ø 50-200 мм

- Одна из самых популярных фрез для обработки плоскостей;
- Острый режущий клин в сочетании с зачистной кромкой позволяют производить высокопроизводительную обработку с низкими усилиями резания и получать хорошую шероховатость обработанной поверхности;
- Экономичная линия, взаимозаменяемость пластин и корпусов с серией SSE45 Cutter (DiJet), также корпуса и пластины совместимы с аналогичными инструментами других производителей;
- Сверх позитивная геометрия позволила снизить усилие резания;

125

125

160

138,7

138,7

173.7

213,7

40

40

40

 Подходит для всех групп об 	opaba	тываемы	х матери	алов до	гвердост	и 40 HRC	·.			
Максимальная глубина фрезеров Главный угол в плане: φ = 45°.	ания: А	р = 6 мм;								
Обозначение		Dc, мм	D1, мм	d, мм	Lf MM	Ар, мм	Z	Пластина	Винт	Ключ
SM45-A22-50-3-SE12	0	50	63,7	22	40	5,9	3			
SM45-A22-50-4-SE12	0	50	63,7	22	40	5,9	4			
SM45-A22-63-4-SE12	0	63	76,7	22	40	5,9	4]		
SM45-A22-63-5-SE12	0	63	76,7	22	40	5,9	5			
SM45-A27-80-4-SE12	0	80	93,7	27	50	5,9	4			
SM45-A27-80-6-SE12	0	80	93,7	27	50	5,9	6	SE*13T3 *	SA03512	T15P
SM45-B32-100-5-SE12	0	100	113,7	32	50	5,9	5	SE 1313"	SAU3512	115P
SM45-B32-100-7-SE12	0	100	113,7	32	50	5,9	7			

63

63

63

5,9

5,9

5.9

6

8

10

12

Пластины режущие

SM45-B40-125-6-SE12

SM45-B40-125-8-SE12

SM45-C40-160-10-SE12

SM45-C60-200-12-SE12

0

Рис.1

	Р	+	+	+	+
Мые	М	+	+	+	+
иаль	K			+	
Обрабатываемые материалы	N	+		+	
06p ₈	S	+		+	
	Н				

		Размеры								
Обозначение	Рис.	L	I.C.	s	ød	bs	PY3070	PD1572	PY2570	PY2571
SEGT13T3AGEN-MF	1	13,4	13,4	3,97	4,1	2,55	0	•	•	
SEGT13T3AGEN-MM	2	13,4	13,4	3,97	4,1	2,55	0	•	0	0
SEGT13T3AGEN-MR	3	13,4	13,4	3,97	4,1	2,55	•	•	0	

Рекомендации по выбору режимов резания

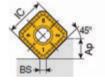
Базовые режимы резания

Обрабатываемый материал	Твердость	Vс, м/мин	Fz, мм/зуб
Низкоуглеродистые стали	До 180 НВ	250 (200-300)	0,2 (0,1-0,3)
Углеродистые стали	До 250 НВ	220 (170-250)	0,2 (0,1-0,3)
Инструментальные и штамповые стали	До 255 НВ	120 (100-150)	0,2 (0,1-0,3)
Нержавеющие стали	До 250 НВ	220 (170-250)	0,2 (0,1-0,3)
Серые чугуны	До 300 НВ	200 (150-250)	0,2 (0,1-0,3)
Высокопрочные чугуны	До 300 НВ	150 (120-180)	0,2 (0,1-0,3)
Улучшенные стали	≤ 40 HRc	80 (60-100)	0,15 (0,1-0,2)
Алюминиевые сплавы	-	500 (300-800)	0,2 (0,1-0,3)

[•] складская программа; ○ производственная программа; □ изготавливается под заказ


D1

Серия Classic Double Square

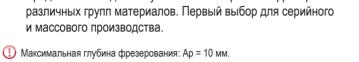

Торцевые фрезы CDS458

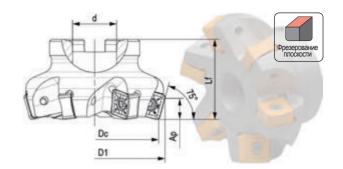
- ✓ Высокопроизводительные классические Торцевые фрезы 45°;
- ✓ Экономичная серия с негативными двухсторонними пластинами;
- √ 8 режущих кромок;
- ✓ Предназначена для чистового, получистового и чернового фрезерования. Криволинейная передняя поверхность позволила получить острый режущий клин, что снижает усилия резания и риск возникновения вибрации. Обеспечивается высокая производительность, точность и качество поверхности;
- ✓ Wiper эффект;
- ✓ Торцовые фрезы с углом φ=45° могут работать с подачами ~ на 40% выше чем аналогичные фрезы с углом φ=90°.
 При прочих равных условиях и достаточной жесткости технологической системы.
- Максимальная глубина фрезерования: Ар = 6,5 мм;

Пластины режущие

	Р	+	+	+	+	+	+
Mble	М	+	+		+	+	
иаль	K	±		+			+
Обрабатываемые материалы	N	±	±	±	±	±	
066	S		±		±	±	
	Н						

		Размеры				PVD			CVD
Обозначение	IC	s	BS	PY2571	PY2070	PD1572	PY2570	PY3570	CD2070
SNMU1306ANTN-L	13,5	6,8	1,6		0		•	•	0
SNMU1306ANTN-M	13,5	6,8	1,6	•		•	•	0	0

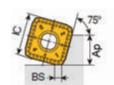




Серия Classic Double Square

Торцевые фрезы CDS758

- Высокопроизводительные классические Торцевые фрезы 75°;
- Экономичная серия с негативными двухсторонними пластинами;
- 8 режущих кромок;
- Предназначены для получистового и чернового фрезерования различных групп материалов. Первый выбор для серийного

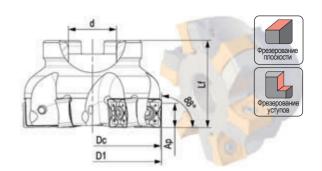


Обозначение		Dc, мм	D1, мм	d, мм	Lf,	Ар, мм	Z	Пластина	Винт	Ключ
CDS758-A22-50-5-SN13	0	50	57,2	22	40	10	5			
CDS758-A22-63-6-SN13	0	63	87,2	22	40	10	6			
CDS758-A27-80-7-SN13	0	80	87,2	27	50	10	7			
CDS758-B32-100-8-SN13	0	100	114,6	32	50	10	8	SN*1306ENTN*	SA0411	T15P
CDS758-B40-125-10-SN13	0	125	139,6	40	63	10	10			
CDS758-C40-160-12-SN13	0	160	174,6	40	63	10	12			
CDS758-C60-200-16-SN13	0	200	214,6	60	63	10	16			

Пластины режущие

	Р	+	+	+	+	+
Mble	М	+		+	+	
иаль	K	±	+			+
Обрабатываемые материалы	N	±	±	±	±	
06pa	S			±	±	
	Н			±		

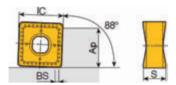
	Размеры								
Обозначение	IC	s	BS	PY2571	PD1572	PY2570	PY3570	CD2070	
SNMU1306ENTN-M	13	7	1		•	•		0	


Корпуса поставляются без пластин

Серия Classic Double Square

Торцевые фрезы CDS888

- ✓ Высокопроизводительные Торцевые фрезы 88°;
- ✓ Экономичная серия с негативными двухсторонними пластинами;
- √ 8 режущих кромок;
- Предназначены для чернового и получистового фрезерования плоскостей и уступов. Первый выбор для предварительной обработки уступов.



Максимальная глубина фрезерования: Ар = 11 мм.

Обозначение		Dc, мм	D1, мм	d, мм	Lf,	Ар, мм	Z	Пластина	Винт	Ключ
CDS888-A22-50-5-SN13	0	50	50,6	22	40	11	5			
CDS888-A22-63-6-SN13	0	63	63,6	22	40	11	6			
CDS888-A27-80-7-SN13	0	80	80,6	27	50	11	7		SA0411	T15P
CDS888-B32-100-8-SN13	0	100	100,6	32	50	11	8	SN*1306ZNTN*		
CDS888-B40-125-10-SN13	0	125	125,6	40	63	11	10			
CDS888-C40-160-12-SN13	0	160	160,6	40	63	11	12			
CDS888-C60-200-16-SN13	0	200	200,6	60	63	11	16			

Пластины режущие

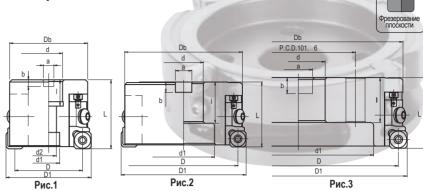
	Р	+	+	+	+
Mble -	М	+	+	+	
Обрабатываемые материалы	K	±			+
абать латер	N	±	±	±	
06pa	S		±	±	
	Н		±		

		Размеры						
Обозначение	IC	s	BS	PY2571	PY2570	PY3570	CD2070	
SNMU1306ZNTN-L	13,5	7	1		•		0	
SNMU1306ZNTN-M	13,5	7	1	•	•	0		

Рекомендации по выбору режимов резания

Базовые режимы резания

Обрабатываемый материал	Твердость	Сплав	Vс, м/мин	Fz, мм/зуб
Низкоуглеродистые стали	менее 180НВ	DD 45-0	170-250	0,1-0,4
Углеродистые стали (сталь 50)	менее 250НВ	PD1572 PY2570	150-230	0,1-0,4
Инструментальные и штамповые стали (4Х5МФ1С, 1.2379)	менее 255НВ	1 12570	130-200	0,1-0,35
Нержавеющие стали (08Х18Н10, 1.4401)	менее 250НВ	PY2570	120-200	0,1-0,3
Серые чугуны (Сч25,Сч30)	менее 300НВ	- PD1572	100-180	0,1-0,4
Высокопрочные чугуны (Вч60-2, Вч79-2)	менее 300НВ	9 1572	90-170	0,1-0,4
Жаропрочные и титановые сплавы	менее 45HRc	PY2570	30-60	0,1-0,3



Серия Finish Jet Mill (Ø 80-250мм)

Торцовые фрезы FJM

- Высокопроизводительная чистовая обработка плоскостей
- При использовании комбинации из двух чистовых и двух черновых пластин достигается стабильная чистовая поверхность.
- При использовании четырех чистовых пластин возможно еще больше увеличить подачу при сохранении высокого качества поверхности. Для этого необходимо, чтобы глубина фрезерования Ар была менее 0,1мм.
- Применение данных фрез в ряде случаев позволяет отказаться от "плоской шлифовки"

Максимальная глубина фрезерования: При исп. 2 чистовых и 2 черновых пластин: Ар = 0,3 мм; При исп. 4 чистовых пластин: Ар = 0,1 мм; Главный угол в плане: ϕ = 90°; Угол наклона: γ = +8°; Угол разворота: λ : -15°

Обозначение)	Рис.	D1, мм	D, мм	Db, мм	L,	d, MM	d1, мм	d2, мм	а, мм	b, mm	e, MM	Пластина / Картридж / Винт пластины	Картридж: Болт / Кольцо / Регулировочный штифт	Ключи
FJM-4080R-27	0	1	80	65	71	63	27	20	14,3	12,4	7	22	SDHW1504ADFN-W1 (2)		
FJM-4100R-32	0	1	100	85	90	63	32	26	17	14,4	8	32	SDHW1504ADFN-W2 (2)		А-20 (Ø80-200 мм)
FJM-4125R-40	0	2	125	110	114	63	40	60	-	16,4	9	40	SSFDR15-15F (2)	BBH-825	A-200L (Ø250mm)
FJM-4160R-40	0	2	160	145	148	63	40	75	-	16,4	9	40	SPHW1203ZPTR (2)	SBZ-8 ADS-513	LW-050
FJM-4200R-60	0	3	200	186	186	63	60	134	-	25,7	14	40	SSFPR15-12R (2)	7100 010	AD-2080
FJM-4250R-60	0	3	250	237	237	63	60	182	-	25,7	14	40	DSW-4510H		

① В стандартный комплект поставки входит 2 картриджа для черновых пластин и 2 для чистовых

Пластины режущие

Рис.2 Чистовая пластина для сталей

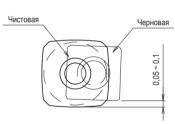


Схема установки режущих пластин

Обозначение	Due	Α,	T,	С покр	ытием	Без покрытия
Ооозначение	Рис.	ММ	ММ	DH103	JC8015	CX75
SDHW1504ADFN-W1	1	15,826	4,76	0	-	-
SDHW1504ADFN-W2	2	15,82	4,76	-	-	0
SPHW1203ZPTR	3	12,7	3,18	-	0	-
SDHW1504ADEN-W2	2	15,82	4,76	0	-	-
SDHW1504ADEN-F1	4	15,82	4,76	0	-	0

технических системах

Информацию о сплавах см. стр. Б-121-123

Практический пример

Чистовая обработка плоскостей

Площадь S=11 м²

Обрабатываемый материал сталь в состоянии поставки

Диаметр инструмента 200 мм, Vz = 300 м/мин, Ap = 0.3 мм, Fz = 2 мм/зуб.

Обработка без СОЖ. Время обработки 1 час 30 мин. Rz = 2.5 мкм.

• складская программа; ○ производственная программа; □ изготавливается под заказ

Рекомендации по выбору режимов резания

Базовые режимы резания при использовании 2-х чистовых и 2-х черновых пластин

	Обрабатываемый материал	Пластина	НВ	Сплав	Vc, м/мин	Fo, мм/об.	Макс. Ар, мм
	Низкоуглеродистые стали	SDHW1504ADFN-W2 (SDHW1504ADEN-F1)	180 - 255	CX75	250 - 300	4 - 5	0,3
Р	Среднеуглеродистые стали	SDHW1504ADFN-W2 (SDHW1504ADEN-F1)	180 - 255	CX75	200 - 250	4 - 5	0,3
	Легированные, штамповые и инструментальные стали	SDHW1504ADFN-W2 (SDHW1504ADEN-F1)	180 - 255	CX75	100 - 150	4 - 5	0,3
М	Нержавеющие стали	SDHW1504ADEN-W2 (SDHW1504ADEN-F1)	менее 250	DH103	80 - 120	2 - 4	0,2
К	Серые чугуны	SDHW1504ADFN-W1 (SDHW1504ADEN-F1)	180 - 250	DH103	130 - 200	4 - 6	0,3
, N	Высокопрочные чугуны	SDHW1504ADFN-W1 (SDHW1504ADEN-F1)	менее 300	DH103	130 - 200	4 -6	0,3
Н	Инструментальные стали 30-40 HRC	SDHW1504ADEN-W2 (SDHW1504ADEN-F1)	-	DH103	100 -140	2 - 4	0,2
П	Закаленные стали 40-50 HRC	SDHW1504ADEN-W2 (SDHW1504ADEN-F1)	-	DH103	40 - 60	0,3 - 0,7	0,1

Базовые режимы резания при использовании 4-х чистовых пластин

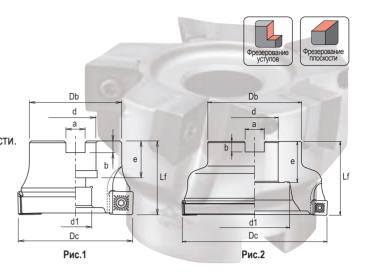
	Обрабатываемый материал	НВ	Сплав	Vc, м/мин	Fo, мм/об.	Макс. Ар, мм
	Низкоуглеродистые стали	180 - 255	CX75	250 - 300	6 - 10	0,1
Р	Среднеуглеродистые стали	180 - 255	CX75	200 - 250	6 - 10	0,1
	Легированные, штамповые и инструментальные стали	180 - 255	CX75	100 - 150	6 - 10	0,1
М	Нержавеющие стали	менее 250	DH103	80 - 250	6 - 10	0,1
K	Серые чугуны	менее 300	DH103	130 - 120	6 - 12	0,1
, N	Высокопрочные чугуны	менее 300	DH103	110 - 180	6 - 12	0,1

Пример использования фрез FJM

Чистовая обработка основания штампа

Высокопроизводительное чистовое фрезерование плоскости

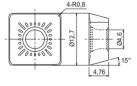
• складская программа; ○ производственная программа; □ изготавливается под заказ

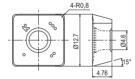


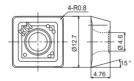
Серия SSD90 Cutter (Ø 50-125 мм)

Торцовые фрезы SSD90

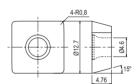
- ✓ Корпус серии «G-Body».
- ✓ Сочетание пластин класса точности М, наличие торцовой и переферийной режущих кромок с высокоточным корпусом позволяет получить очень точный угол обрабатываемого уступа 90° и хорошее качество поверхности.
- ✓ Твердосплавные подкладные пластины предотвращают повреждение корпуса фрезы в случае поломки режущей пластины.
- Максимальная глубина фрезерования: Ар = 11 мм; Главный угол в плане: ф = 90°; Угол наклона: ¼ = +10°; Угол разворота: λ: -9° до -11°
- **(!) Корпус серии (G-Body** доп. информацию см. на стр. Б-11




Обозначение		Рис.	Dc,	Db,	Lf,	d, мм	d1, мм	а, мм	b, MM	е,	Z	Пластина	Винт пластины/ Винт подкладной пластины	Ключ пластины/ Ключ подкладной пластины	Подкладная пластина
SSD90-4050R-22	0	1	50	41	40	22	17	10,4	6,3	20	4				
SSD90-5063R-22	0	1	63	50	40	22	17	10,4	6,3	20	5				
SSD90-6080R-27	0	1	80	60	50	27	37	12,4	7	22	6	SDMT1204PDER SDHW1204PDTR	TSW-3512H SSW-535	A15-T LW-035	SM-SD12
SSD90-8100R-32	0	2	100	70	50	32	43	14,4	8	32	8	05111112041 5111	0011 000	LVV 000	
SSD90-10125R-40	0	2	125	80	63	40	57	16,4	9	35	10				


Пластины режущие

SDMT1204PDER Со стружколомом Сплав: JC8050, JC5040 SDMT1204PDER Со стружколомом Сплав: JC8015 SDMT1204PDER Со стружколомом Сплав: JC605W



Обозначение		C покрытием PVD		C покрытием CVD
Ооозначение	JC8015	JC8050	JC5040	JC605W
SDMT1204PDER	0	0	•	
SDHW1204PDTR	0	-	-	-

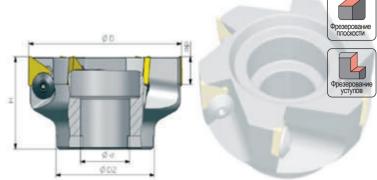
Информацию о сплавах см. стр. Б-121-123

Рекомендации по выбору режимов резания

Базовые режимы резания для торцовых фрез серии SSD90

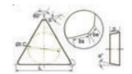
Обрабатываемый материал	Твердость	Сплав	Vс, м/мин	Fz, мм/зуб
Низкоуглеродистые стали	До 180НВ	JC5040 (JC8050)	250 (200-300)	0.2 (0.1-0.3)
Углеродистые стали	До 250НВ	JC5040 (JC8050)	220 (170-250)	0.2 (0.1-0.3)
Инструментальные и штамповые стали	До 255НВ	JC5040	120 (100-150)	0.2 (0.1-0.3)
Нержавеющие стали	До 250НВ	JC8050 (JC8015)	220 (170-250)	0.2 (0.1-0.3)
Серые чугуны	До 300НВ	JC605W (JC8015)	200 (150-250)	0.2 (0.1-0.3)
Высокопрочные чугуны	До 300НВ	JC8015	150 (120-180)	0.2 (0.1-0.3)
Закаленные стали	40-55HRC	JC8015	80 (60-100)	0.1 (0.05-0.15)

ullet складская программа; \circ производственная программа; \Box изготавливается под заказ



Серия FTP-90

Торцевые фрезы FTP-90, угол в плане 90°


- Проверенная временем надежная и простая конструкция;
- Корпуса фрез и режущие пластины взаимозаменяемы с аналогичным инструментом других производителей;
- ✓ Максимальная глубина фрезерования Ар = 15 мм;
- Хорошо подходит для фрезерования плоскостей и уступов на универсальных станках.

Обозначение		D, мм	D2, мм	d, мм	Н,	ар, мм	Z	Bec, кг	Пластина режущая	Винт пластины	Ключ
Б10.013.005	0	63	50	22	50	15	3	0,5		MYL8X18	
Б10.013.010	0	80	60	27	50	15	4	0,9			
Б10.013.015	0	100	70	32	50	15	5	1,8	TPKN2204		S4
Б10.013.020	0	125	80	40	63	15	6	2,5			
Б10.013.025	0	160	100	40	63	15	7	3,6			

Пластины режущие

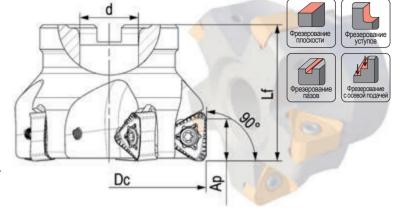
A	Обозначение		1.0		_	_	Сплав	
Артикул	Ооозначение	L	1.6.	3	α	ľ	CP2571	
Б10.014.020	TPKN2204PDSKR	22	12,7	4,76	11°	2,0	•	

Рекомендации по выбору режимов резания

Для торцовых фрез серии FSE45 и FTP-90

ISO	Обрабатываемый материал	Твердость	Сплав	Vc, м/мин	Fz, мм/зуб
	Низкоуглеродистые стали	менее 180НВ		270 (200-360)	0,2 (0,1-0,3)
Р	Углеродистые стали	180-280HB	PY3070 PD1572 CP2571	240 (200-320)	0,2 (0,1-0,3)
	Инструментальные и штамповые стали	280-350HB		220 (170-340)	0,2 (0,1-0,3)
М	Нержавеющие стали (08X18H10)	менее 270НВ	PY2070 PY3070	140 (100-250)	0,2 (0,1-0,3)
N	Чугун	140-220HB	PD1572	150-400	-

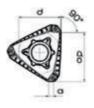
• складская программа; ○ производственная программа; □ изготавливается под заказ



Серия Т3 Shoulder SIX

Торцевые фрезы T3SS Ø 50-200 мм

- ✓ Торцевые фрезы T3SS Ø 50-200 мм;
- Высокоэффективная черновая и получистовая обработка уступов, плоскостей и пазов;
- Низкие силы резания, криволинейная передняя поверхность;
- ✓ Режущие пластины повышенной прочности, за счёт увеличения толщины пластин;
- ✓ Двухсторонняя пластина с 6-ю режущими кромками.


Максимальная глубина фрезерования: Ар = 13 мм

Обозначение		Dc, мм	d, мм	Lf,	ар, мм	Z	Пластина	Винт	Ключ		
T3SS-A22-50-4-TN13	0	50	22	40	13	4					
T3SS-A22-63-5-TN13	0	63	22	40	13	5					
T3SS-A27-80-7-TN13	0	80	27	50	13	7					
T3SS-B32-100-8-TN13	0	100	32	50	13	8	TN*1806*	SA0411	T15P		
T3SS-B40-125-10-TN13	0	125	40	63	13	10					
T3SS-C40-160-12-TN13	0	160	40	63	13	12					
T3SS-C60-200-16-TN13	0	200	40	63	13	16					

Пластины режущие

	Р	+	+
Mble	М	+	+
ывае г иаль	K	±	±
Обрабатываемые материалы	N		
06pa	S	+	+
	Н		

	Разм	Размеры					
Обозначение	IC	s	PY2070	PY2570			
TNGX1806PNFR	11,46	7,6	•	0			

Рекомендации по выбору режимов резания

Базовые режимы резания

		Обр-і	ка плоскости, Л	Ae≤1D	Обр-ка уступа			
Обрабатываемый материал	Твердость	V, м/мин	Fz, мм/зуб	Ар, мм	V, м/мин	Fz, мм/зуб	ар × ае, мм	
Углеродистые стали	≤250HB	150	0,1-0,25	6	200	0,1-0,25	~ 45	
Литейные стали	≤285HB	150	0,1-0,25	6	180	0,1-0,25	~ 45	
Штамповые стали	≤255HB	150	0,06-0,23	6	200	0,06-0,23	~ 45	
Стали для прессформ	30-36HRC	130	0,06-0,23	6	150	0,06-0,23	~ 30	
Чугуны (СЧ, ВЧ)	≤300HB	180	0,1-0,25	6	250	0,1-0,25	~ 45	
Нержавеющие аустенитные стали	≤250HB	110	0,1-0,18	4	120	0,1-0,18	~ 45	
Нержавеющие мартенстные стали	≤250HB	150	0,1-0,20	4	180	0,1-0,20	~ 45	

ullet складская программа; \circ производственная программа; \Box изготавливается под заказ

Серия T4TS Tangen Shoulder

Торцевые фрезы T4TS Ø 50-160

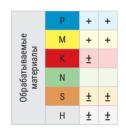
- Серия торцевых фрез для черновой обработки при тяжелых условиях резания;
- Тангенциальное крепление пластин с 4-мя режущими кромками;
- ✓ Высокая жесткость;
- ✓ Низкие усилия резания, за счет позитивной геометрии с острыми режущими кромками;
- Для обработки плоскостей, пазов и прямоугольных уступов.

8

13

Пластины режущие

T4TS-C40-160-13-LN13



160

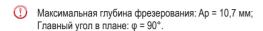
40

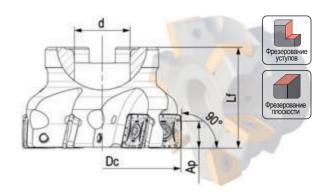
Обозначение	L	LE	s	RE	BS	PY2070	PY2570		
LNGX130608PR-PM	13,2	12,4	6,7	0,8	2,4	•	0		

Рекомендации по выбору режимов резания

Для фрез серии Tangen Shoulder

Обрабатываемый материал	V, м/мин	Fz, мм/зуб
Углеродистые стали	150-300	0,1-0,35
Литейные стали	150-250	0,1-0,35
Стали для прессформ	100-200	0,1-0,3
Нержавеющие стали	90-200	0,08-0,25
Чугуны (СЧ, ВЧ)	120-220	0,1-0,3
Титановые и жаропрочные сплавы	50-100	0,1-0,2

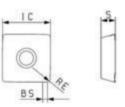




Серия Р90 Perfect90

Торцевые фрезы Р90 Ø 50-200 мм

- Чистовая и получистовая обработка уступов, плоскостей и пазов;
- Большой задний угол пластины позволяет получать хорошее качество поверхности;
- Точный угол 90° между торцевой и периферийной режущей кромками позволяет получать точный угол при обработки уступов.



Обозначение		Dc, мм	d, мм	Lf,	Ар, мм	Z	Пластина	Винт	Ключ	
P90-A22-50-4-SD13	0	50	22	40	10,7	4				
P90-A22-50-5-SD13	0	50	22	40	10,7	5				
P90-A22-63-6-SD13	0	63	22	40	10,7	6				
P90-A27-80-7-SD13	0	80	27	50	10,7	7	SDKT13T3*	SA0411	T15P	
P90-B32-100-8-SD13	0	100	32	50	10,7	8	SUKTISTS	3A0411	1155	
P90-B40-125-10-SD13	0	125	40	63	10,7	10				
P90-C40-160-12-SD13	0	160	40	63	10,7	12				
P90-C60-200-16-SD13	0	200	60	63	10,7	16				

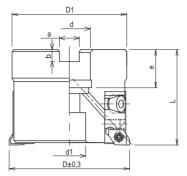
Пластины режущие

	Р	+	+	+	+
Mble	М		±	+	+
иаль	K	+	+	+	+
Обрабатываемые материалы	N				
06pi	S			±	
	Н				

		Размеры		CVD	PVD		
Обозначение	IC	s	BS	CD2070	PD1572	PY2570	PY2571
SDKTMT308PER-M	13,8	4,1	1,2		•		
SDKTMT320PER-M	13,8	4,1	1,0	0	•		

Рекомендации по выбору режимов резания Базовые режимы резания

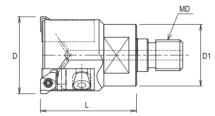
Обрабатываемый материал	Твердость	Сплав	Vс, м/мин	Fz, мм/зуб
Низкоуглеродистые стали	менее 180НВ	DD 45-0	170-250	0,2(0,1-0,3)
Углеродистые стали (сталь 50)	менее 250НВ	PD1572 PY2570	150-230	0,2(0,1-0,3)
Инструментальные и штамповые стали (4Х5МФ1С, 1.2379)	менее 255НВ	1 12070	130-200	0,15(0,1-0,25)
Нержавеющие стали (08Х18Н10, 1.4401)	менее 250НВ	PY2570	120-200	0,15(0,1-0,25)
Серые чугуны (Сч25,Сч30)	менее 300НВ	PD2572	100-180	0,2(0,1-0,3)
Высокопрочные чугуны (Вч60-2, Вч79-2)	менее 300НВ	PY2570	90-170	0,2(0,1-0,3)
Жаропрочные и титановые сплавы	менее 45 HRc	PY2570	30-60	0,15(0,1-0,25)


Корпуса поставляются без пластин

Серия Back & Forth Cutters

Торцовые фрезы РГС

- ✓ Высокоскоростное чистовое фрезерование стенок
- ✓ Возможна рабочая подача снизу вверх, исключаются холостые проходы

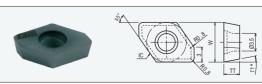


Максимальная глубина фрезерования: Ap = 0.05-0.5 мм; Главный угол в плане: φ = 90°

Обозначение	е	D, мм	D1, мм	L,	d, мм	d1, мм	а, мм	b, мм	е,	Z	Пластина	Винт	Ключ	Резцовая вставка, винты, ключ
PFC-4050R-22	0	50	47	50	22	17	10,4	6,3	20	4				
PFC-4063R-22	0	63	60	50	22	17	10,4	6,3	20	4				
PFC-6063R-22	0	63	60	50	22	17	10,4	6,3	20	6	DDCT0002 W2	DCW 20711	A 400D	SDGPR09CA-PFC,
PFC-6063R-27	0	63	60	50	27	20	12,4	7	22	6	DPGT0903-W3	DSW-307H	A-10SD	RCW-05008, HCS5-10, LW-040
PFC-4080R-27	0	80	76	50	27	20	12,4	7	22	4				
PFC-8080R-27	0	80	76	50	27	20	12,4	7	22	8				

Сменные головки МРГ

Обозначение		D, мм	L, mm	D1, мм	MD	Z	Момент затяжки, Нм	Пластина	Винт	Ключ	Резцовая вставка, винты, ключ
MPF-2030-M16	0	30	50	28	M16	2	25				SDGPR09CA-PFC,
MPF-2033-M16	0	33	50	32	M16	2	25	DPGT0903-W3	DSW-307H	A-10SD	RCW-05008,
MPF-3040-M16	0	40	50	32	M16	3	25				HCS5-10, LW-040


Информацию о цилиндрических хвостовиках см. на стр. Б-118-120 Информацию об оправках для фрезерных головок см. в разделе E.

Пластины режущие

Обозначение	IC,	Т,	W,	Допуск	С покр	С покрытием		3N
					DH102	JC8003	JBN795	JBN500
DPGT0903-W3	7,94	3,18	7,94	G	0	0		

Информацию о сплавах см. стр. Б-121-123

• складская программа; ○ производственная программа; □ изготавливается под заказ

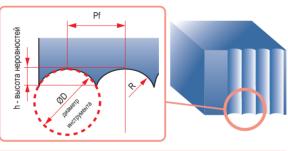
Рекомендации по выбору режимов резания

- ✓ Для торцовых фрез используйте оправки с меньшим диаметром, для обеспечения гарантированного бокового зазора.
- ✓ Для фрезерных головок используйте только твердосплавные оправки.
- ✓ При возникновении вибрации или низкого качества чистовой поверхности из-за недостаточной жесткости станка необходимо уменьшить частоту вращения шпинделя или подачу (для торцовых фрез понизить подачу на зуб до 0,05мм).

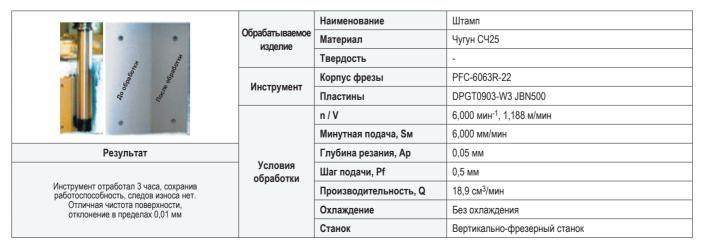
Базовые режимы резания

Для торцовых фрез РFC и сменных головок MPF

Обрабатываемый материал	Сплав	Сплав	Vс, м/мин	Fz, мм/зуб	Ар, мм
I homen i	160 - 260HB	JBN500	1,200 (800 - 2,000)	0.1 (0.05 - 0.15)	0.05 - 0.1
Чугуны	100 - 200HB	JC8003	400 (300 - 500)	0.1 (0.05 - 0.15)	0.05 - 0.5
D	470 000 ID	JBN500	1,000 (600 - 1,500)	0.1 (0.05 - 0.15)	0.05 - 0.1
Высокопрочные чугуны	170 - 200HB	JC8003	300 (200 - 400)	0.1 (0.05 - 0.15)	0.05 - 0.5
Углеродистые и легированные стали	менее 250НВ	JC8003	200 (100 - 300)	0.1 (0.05 - 0.15)	0.05 - 0.2
		JBN795	400 (300 - 600)	0.1 (0.05 - 0.15)	0.05 - 0.1
Штамповые стали	30 - 36HRC	JC8003	150 (100 - 250)	0.1 (0.05 - 0.15)	0.05 - 0.1
		DH102	280 (230 - 330)	0.1 (0.05 - 0.15)	0.05 - 0.1
III-auraa o arasu	20 421100	JBN795	300 (250 - 400)	0.1 (0.05 - 0.15)	0.05 - 0.1
Штамповые стали	38 - 43HRC	DH102	250 (200 - 300)	0.1 (0.05 - 0.15)	0.05 - 0.1
	42 F2UDC	JBN795	280 (230 - 350)	0.1 (0.05 - 0.15)	0.05 - 0.1
	42 - 52HRC	DH102	230 (180 - 280)	0.1 (0.05 - 0.15)	0.05 - 0.1


Классический метод

Новая технология


Шероховатость поверхности

$$R = \frac{ØD}{2}$$
 MKM = $\frac{(Pf)^2}{8R} \times 1000$

 Для увеличения производительности следует использовать фрезу с максимально возможным диаметром.
 Это позволит увеличить осевую подачу.

Пример использования фрезы PFC с пластиной из кубического нитрида бора

• складская программа; о производственная программа; приготавливается под заказ

High Feed Die Master - SKS

Quick and Mini - QM

Главная особенность этого метода - большие величины подач и скорости резания при малой глубине резания.

Большая величина подачи возможна за счет специальной геометрии режущей части, отличительной особенностью которой является следующее:

- Криволинейная или прямая площадка при вершине, дающая эффект зачистной кромки.
- Небольшое значение главного угла в плане, как правило, в пределах 10-20°, благодаря чему основная составляющая силы резания направлена вдоль оси инструмента. При таком направлении сил резания уменьшается величина изгиба инструмента, соответственно снижается вероятность возникновения вибрации.

Основные преимущества данного метода:

- Большой удельный съем металла и высокая производительность при выполнении операций чернового фрезерования. Возможность работы с большими подачами на зуб (до 4 мм.)
- По данной технологии возможно выполнения всех операций фрезерования.
- Возможность обработки на глубину 10 x D за счет небольших радиальных сил.
- Нагрузка на шпиндель меньше, чем при классическом черновом фрезеровании.

Подходит для эффективного чернового фрезерования при использовании на станках малой и средней жесткости. Усилия, воздействующие на рабочие органы станка, значительно ниже, что благоприятно сказывается на ресурсе оборудования. Ещё одним важным фактором является перераспределение тепла в зоне резания. При сечениях среза, обусловленных конструктивными особенностями инструмента в данном диапазоне подач, основное тепло отводится вместе со стружкой, не успевая переходить в заготовку и инструмент. За счёт «сверхвысокой» подачи образуется стружка надлома в виде коротких элементов даже при обработке пластичных материалов, при этом время контакта режущего клина со стружкой настолько мало, что большая часть тепла, образующегося в зоне резания, удаляется вместе со стружкой, а заготовка и инструмент практически не успевают нагреваться. Данный эффект позволяет производить обработку закаленных сталей, не опасаясь «отпуска» поверхностного слоя.

Глубина резания, как правило, находится в пределах 0,2-1,2 мм в зависимости от геометрии и диаметра фрезы, а также от обрабатываемого материала.

• складская программа; ○ производственная программа; □ изготавливается под заказ

High Feed Die Master - SKS Extreme

() Стальной корпус серии G-Body доп. информацию см. на стр. Б-11

- Следующее поколение фрез серии SKS для чернового фрезерования со сверхвысокими подачами.
 Режущие пластины прочнее в 1,5 раза, за счет увеличения толщины до 7,5 мм.
- ✓ 2-х сторонние пластины (6 режущих кромок) из новой марки твердого сплава JC7560, которая обеспечивает длительный период стойкости за счет высокой ударной прочности и сопротивления термическому удару.
- ✓ Увеличенная глубина фрезерования до 3 мм.
- ✓ Эффективно работает с большим вылетом вплоть до L/D=6
- ✓ Силы резания на 18% ниже, чем у предыдущей серии фрез SKS
- ✓ Надежный и простой узел крепления пластин обеспечивает быструю и точную замену режущих пластин.

Торцовые фрезы SKS Extreme

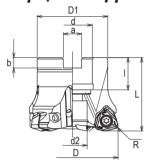
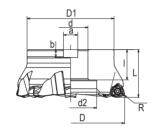
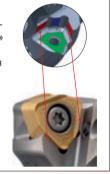


Рис.1 С внутренним подводом СОЖ




Рис.2 Без внутреннего подвода СОЖ

ОСОБЕННОСТИ КРЕПЛЕНИЯ ПЛАСТИН SKS EXTREME

Опорные поверхности гнезда под режущую пластину выполнены с отрицательным наклоном, при установке пластина «заклинивается» в гнезде, в результате чего достигается надежная фиксация. Для надежного закрепления достаточно одного винта.

У фрез диаметром 50 мм крепежный болт находится внутри.

Обозначение		Рис.	D, мм	L,	d ₁ , мм	d, MM	d ₂ , мм	а,	b, мм	I,	Z	Пластина	Винт	Ключ	Прихват	Вес,
EXSKS-4050R-22*	0	1	50	55	40	22	9,6	10,4	6,3	19	4				M10×1,5×25*	0,3
EXSKS-4052R-22	0	1	52	50	40	22	17	10,4	6,3	20	4	. ■ Md			M10	0,4
EXSKS-5063R-22	0	1	63	50	48	22	17	10,4	6,3	20	5	L &			M10	0,5
EXSKS-5063R-27*	0	1	63	50	48	27	20	12,4	7	22	5	0ZE	13H	_	M12×1,75×30*	0,5
EXSKS-5066R-27*	0	1	66	50	48	27	20	12,4	7	22	5	7	W-5.	4-20	M12×1,75×30*	0,5
EXSKS-6080R-27	0	2	80	55	65	27	37	12,4	7	22	6	600	CSI		M12	0,9
EXSKS-7100R-32	0	2	100	55	85	32	45	14,4	8	32	7	WNWU0907			M16	1,7
EXSKS-8125R-40	0	2	125	55	100	40	60	16,4	9	35	8	≥			M20	2,7
EXSKS-9160R-40	0	2	160	55	100	40	85	16,4	9	35	9				M20	3,9

^{*} Корпуса поставляются с зажимным болтом с нестандартным размером. Для всех остальных корпусов используйте зажимные болты, идущие вместе с оправками.

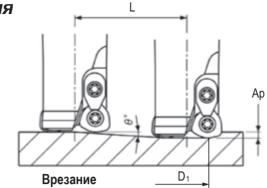
Пластины режущие

Обозначение	До-	A,	Т, мм	В,	R	CI			C PVD покрытием		
	Hyck	IVIIVI		IVIIVI		JC7560	JC8118	JC8050			
WNMU090720ZER-PM	М	14	7,66	1,94	2	0	0	0			

Две новых марки сплава для обработки обычных сталей, штамповых сталей высокой твердости и нержавеющих сталей.

Пример использования фрез SKS Extreme

Фрезерование штамповой стали фрезами серии SKS Extreme


ullet складская программа; \circ производственная программа; \Box изготавливается под заказ

Рекомендации по выбору режимов резания

- Рекомендуется применять попутное фрезерование и, следовательно, движение инструмента по своей траектории должно осуществляться против часовой стрелки.
- ✓ Глубина врезания за один оборот фрезы по траектории не должна превышать максимальную глубину резания, рекомендуемую для данной фрезы.
- ✓ При фрезеровании с врезанием и винтовой интерполяцией необходимо уменьшить значение минутной подачи на 30% и более по сравнению с рекомендованным значением в стандартной таблице каталога.
- ✓ При фрезеровании с осевой подачей необходимо уменьшить минутную подачу на 50% и более от рекомендованного значения.
- ✓ При фрезеровании с осевой подачей может возникнуть длинная сливная стружка, поэтому необходимо обеспечить безопасные условия работы и соблюдение техники безопасности.
- ✓ Не рекомендуется комбинировать вместе фрезерование с осевой подачей и фрезерование с врезанием под углом.

РЕКОМЕНДАЦИИ ДЛЯ СОСТАВЛЕНИЯ УПРАВЛЯЮЩЕЙ ПРОГРАММЫ													
Размер пластины	W	Ар	T	α°	R								
	SKS	Extre	eme										
09	8,2	3,0	1,41	16	3,0	-Ap							
													
						W							
						α \ W R							
						T							

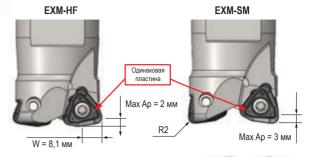
R - радиус при вершине для составления УП; Т - величина необработанного участка

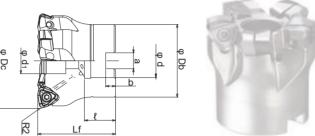
Рекомендации по выбору режимов резания при фрезерование круговой интерполяцией для SKS Extreme

					Фрезеровани	е с врезанием	Фрезерование с винт	овой интерполяцией	Макс. глубина	
пла	змер стины , мм	Ø инструмента I, мм	Эффективный рабочий Ø D _{1,} мм	Макс. глубина фрезерования Ар, мм	Макс. угол врезания: ⊖°	Общая длина резания при макс. Ар: L, мм	Мин. Ø обрабатываемого отвестия: Dh, мм	Макс. Ø обрабатываемого отвестия: Dh, мм	фрезерования с осевой подачей Z, мм	
	14	50	33,7	3	2° 24'	71,6	68	96	2	
	14	52	35,7	3	2° 24'	71,6	72	100	2	
шe	14	63	46,7	3	3°	57,3	94	122	2	
Extreme	14	66	49,7	3	2° 42'	63,7	100	128	2	
S	14	80	63,6	3	2° 18'	74,7	128	156	2	
SKS	14	100	83,6	3	1° 42'	101,1	168	196	2	
	14	125	108,5	3	1° 18'	132,2	218	246	2	
	14	160	143,5	3	1°	171,9	288	316	2	

Рекомендации по выбору базовых режимов резания для серии EXSKS Для торцовых фрез

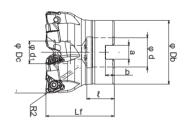
Обрабатываемый материал	Твердость	Сплав	Ар, мм	Vс, м/мин	Fz, мм/зуб
Углеродистые стали (сталь 50)	менее 250НВ	JC7560 JC8050 (JC8118)	0,4-2,0	100-150	1,0-2,0
Штамповые стали (4Х5МФ1С, 1.2379)	менее 255НВ	JC7560 JC8050 (JC8118)	0,4-2,0	100-150	1,0-2,0
Сталь для прессформ	30-36HRC	JC7560 JC8050 (JC8118)	0,4-2,0	90-130	1,0-2,0
Сталь для прессформ	38-43HRC	JC8118 (JC8050)	0,4-1,5	80-110	0,5-1,0
Закаленные штамповые стали	42-52HRC	JC8118	0,4-1,5	55-80	0,5-1,0
Серые (Сч25,Сч30) и высокопрочные чугуны (Вч60-2)	менее 300НВ	JC8118	0,4-2,5	110-150	1,0-2,0
Нержавеющие стали (08X18H10_1 4401)	менее 250НВ	JC8050 (JC7560)	0.4-2.0	100-150	1 0-1 5



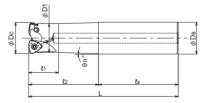

Multi Extreme

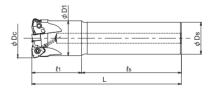
- √ Корпусные фрезы на базе 2-х сторонней пластины WNMU0706. Назначение аналогично фрезам серии SKS Extrime
- ✓ 2-х сторонние пластины 6+6 режущих кромок.
 6 кромок, при установке в корпуса МЕХ-НF / EXM-HF
 - фрезерование с высокими подачами и 6 кромок, при установке в корпуса MEX-SM / EXM-SM фрезерование плоскостей и уступов по классической схеме.
- ✓ 100% использование режущей пластины.

Торцовые фрезы EXM-HF Ø 50-63 мм для обработки с высокой подачей



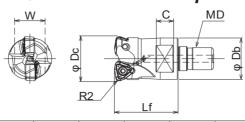
Обозначение		Dc, мм	Lf,	Db, мм	d, MM	d1, мм	а, мм	b, мм	I, MM	Z	Винт	Ключ
EXM-5050R-HF-22	0	50	50	40	22	16,5	10,4	6,3	20	5	TSW-410H	A-15
EXM-5052R-HF-22	0	52	50	40	22	16,5	10,4	6,3	20	5	TSW-410H	A-15
EXM-6063R-HF-22	0	63	50	48	22	17	10,4	6,3	20	6	TSW-410H	A-15


Торцовые фрезы EXM-SM Ø 50-63 мм для фрезерования уступов

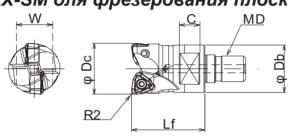


Обозначение		Dс, мм	Lf,	Db, мм	d, мм	d1, мм	а, мм	b, мм	I, MM	Z	Винт	Ключ
EXM-5050R-SM-22	0	50	50	40	22	16,5	10,4	6,3	20	5	TSW-410H	A-15
EXM-5052R-SM-22	0	52	50	40	22	16,5	10,4	6,3	20	5	TSW-410H	A-15
EXM-6063R-SM-22	0	63	50	48	22	17	10,4	6,3	20	6	TSW-410H	A-15

Концевые фрезы фрезы EXM-HF Ø 32-40 мм



Обозначение		Dc, мм	I1, мм	I2, мм	ls, MM	L,	D1, мм	Dы, мм	θn°, мм	z	Пластина	Винт	Ключ
EXM-2032-HF-70-S32	0	32	30	70	80	150	29	32	1,5	2	WNMU070620ZER-PM	TSW-410H	A-15
EXM-2032-HF-120-S32	0	32	30	120	80	200	29	32	0,6	2	WNMU070620ZER-PM	TSW-410H	A-15
EXM-3035-HF-40-S32	0	35	40	-	110	150	31	32	-	3	WNMU070620ZER-PM	TSW-410H	A-15
EXM-3035-HF-40L-S32	0	35	40	-	160	200	31	32	-	3	WNMU070620ZER-PM	TSW-410H	A-15
EXM-4040-HF-50-S32	0	40	50	-	100	150	35	32	-	4	WNMU070620ZER-PM	TSW-410H	A-15
EXM-4040-HF-50L-S32	0	40	50	-	150	200	35	32	-	4	WNMU070620ZER-PM	TSW-410H	A-15


Сменная головка MEX-HF Ø 32-42 мм для обработки с высокой подачей

Обозначение		Dс, мм	Lf, MM	Db, мм	MD, MM	С,	W, MM	Z	Винт	Ключ
MEX-2032-HF-M16	0	32	43	29	M16	12	22	2	TSW-410H	A-15
MEX-3035-HF-M16	0	35	43	29	M16	12	22	3	TSW-410H	A-15
MEX-4040-HF-M16	0	40	43	32	M16	14	26	4	TSW-410H	A-15
MEX-4042-HF-M16	0	42	43	32	M16	14	26	4	TSW-410H	A-15

Сменная головка MEX-SM для фрезерования плоскостей и уступов

Обозначение		Dc,	Lf, MM	Db,	MD,	С,	W, MM	Z	Винт	Ключ
MEX-2032-SM-M16	0	32	43	29	M16	12	22	2	TSW-410H	A-15
MEX-3035-SM-M16	0	35	43	29	M16	12	22	3	TSW-410H	A-15
MEX-4040-SM-M16	0	40	43	32	M16	14	26	4	TSW-410H	A-15
MEX-4042-SM-M16	0	42	43	32	M16	14	26	4	TSW-410H	A-15

Пластины режущие

Обозначение	Допуск	А,	Т,	rε, MM	С покрытием		
					JC8050	JC8118	
WNMU070620ZER-PM	M	11,2	6,4	2	•	•	

¹⁰ пластин в упаковке

Черновое и получистовое фрезерование вертикальной стенки фрезерной головкой Ø32 MEX-SM

Рекомендации по выбору базовых режимов резания

Для головок Multi MEX-HF

Обрабатываемый материал	Твердость	Сплав	Ар, мм	Vс, м/мин	Fz, мм/зуб
Углеродистые стали (сталь 50)	менее 250НВ	JC8050	0,6-1,0	160-200	1,3-1,5
Штамповые стали (4Х5МФ1С, 1.2379)	менее 255НВ	JC8050	0,6-1,0	140-180	1,3-1,5
Сталь для прессформ	30-36HRC	JC8118	0,6-1,0	140-180	1,3-1,5
Сталь для прессформ	38-43HRC	JC8118	0,4-0,8	90-130	1,0-1,2
Закаленные штамповые стали	42-52HRC	JC8118	0,4-0,8	70-100	0,8-1,0
Серые (Сч25,Сч30) и высокопрочные чугуны (Вч60-2)	менее 300НВ	JC8118	0,6-1,5	130-200	1,3-1,5
Аустенитные нержавеющие стали	менее 250НВ	JC8050	0,4-0,8	110-150	1,0-1,2
Ферритные и мартенситные нержавеющие стали	менее 250НВ	JC8118	0,6-1,0	130-170	1,0-1,2

Ae = 0,45÷0,55D

Для концевых фрез Multi EXM-HF-S32

Обрабатываемый материал	Твердость	Сплав	Ар, мм	Vс, м/мин	Fz, мм/зуб
Углеродистые стали (сталь 50)	менее 250НВ	JC8050	0,7-0,8	170-200	1,1-1,2
Штамповые стали (4X5МФ1С, 1.2379)	менее 255НВ	JC8050	0,7-0,8	150-180	1,1-1,2
Сталь для прессформ	30-36HRC	JC8118	0,7-0,8	150-180	1,1-1,2
Сталь для прессформ	38-43HRC	JC8118	0,5-0,6	100-130	0,9-1,0
Закаленные штамповые стали	42-52HRC	JC8118	0,5-0,6	80-100	0,8-0,9
Серые (Сч25,Сч30) и высокопрочные чугуны (Вч60-2)	менее 300НВ	JC8118	0,6-1,2	140-200	1,1-1,2
Аустенитные нержавеющие стали	менее 250НВ	JC8050	0,5-0,6	120-150	0,9-1,0
Ферритные и мартенситные нержавеющие стали	менее 250НВ	JC8118	0,7-0,8	140-170	0,9-1,0
					A 0.45 0.55

Ae = 0,45÷0,55D

Для торцовых фрез Multi EXM-HF

Обрабатываемый материал	Твердость	Сплав	Ар, мм	Vс, м/мин	Fz, мм/зуб
Углеродистые стали (сталь 50)	менее 250НВ	JC8050	0,7-1,5	120-150	1,1-1,5
Штамповые стали (4X5MФ1C, 1.2379)	менее 255НВ	JC8050	0,7-1,5	100-130	1,1-1,5
Сталь для прессформ	30-36HRC	JC8118	0,7-1,5	100-130	1,1-1,5
Сталь для прессформ	38-43HRC	JC8118	0,5-1,2	80-110	1,0-1,3
Закаленные штамповые стали	42-52HRC	JC8118	0,4-1,0	70-90	0,8-1,0
Серые (Сч25,Сч30) и высокопрочные чугуны (Вч60-2)	менее 300НВ	JC8118	0,7-2,0	100-150	1,1-1,5
Аустенитные нержавеющие стали	менее 250НВ	JC8050	0,4-1,2	80-110	1,0-1,3
Ферритные и мартенситные нержавеющие стали	менее 250НВ	JC8118	0,5-1,5	100-130	1,0-1,3

 $Ae \leq 0,65D$

Для концевых фрез Multi MEX-SM / EXM-SM, обработка уступов

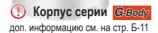
Обрабатываемый материал	Твердость	Сплав	Ар, мм	Vс, м/мин	Fz, мм/зуб
Углеродистые стали (сталь 50)	менее 250НВ	JC8050	1,0-3,0	160-200	0,15-0,3
Штамповые стали (4X5MФ1C, 1.2379)	менее 255НВ	JC8050	1,0-3,0	140-180	0,15-0,3
Сталь для прессформ	30-36HRC	JC8118	1,0-3,0	140-180	0,15-0,3
Сталь для прессформ	38-43HRC	JC8118	1,0-3,0	100-130	0,1-0,25
Закаленные штамповые стали	42-52HRC	JC8118	1,0-3,0	80-100	0,1-0,13
Серые (Сч25,Сч30) и высокопрочные чугуны (Вч60-2)	менее 300НВ	JC8118	1,0-3,0	130-200	0,15-0,3
Аустенитные нержавеющие стали	менее 250НВ	JC8050	1,0-3,0	110-150	0,1-0,25
Ферритные и мартенситные нержавеющие стали	менее 250НВ	JC8118	1,0-3,0	130-170	0,15-0,3

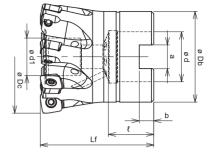
Ae = 0,2÷0,3D

Для концевых фрез Multi MEX-SM / EXM-SM, обработка плоскостей

Обрабатываемый материал	Твердость	Сплав	Ар, мм	Vс, м/мин	Fz, мм/зуб
Углеродистые стали (сталь 50)	менее 250НВ	JC8050	0,6-1,5	130-200	0,2-0,3
Штамповые стали (4Х5МФ1С, 1.2379)	менее 255НВ	JC8050	0,6-1,5	110-180	0,2-0,3
Сталь для прессформ	30-36HRC	JC8118	0,6-1,5	110-180	0,2-0,3
Сталь для прессформ	38-43HRC	JC8118	0,4-1,2	90-130	0,15-0,25
Закаленные штамповые стали	42-52HRC	JC8118	0,4-1,0	80-100	0,1-0,15
Серые (Сч25,Сч30) и высокопрочные чугуны (Вч60-2)	менее 300НВ	JC8118	0,6-2,0	110-200	0,1-0,3
Аустенитные нержавеющие стали	менее 250НВ	JC8050	0,4-1,2	90-150	0,15-0,25
Ферритные и мартенситные нержавеющие стали	менее 250НВ	JC8118	0,6-1,5	110-170	0,2-0,3

Ae = 0,85÷0,9D

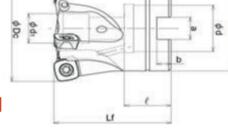

ullet складская программа; \circ производственная программа; \Box изготавливается под заказ



Cepuя SKS G2 (Ø 25-100мм)

Торцовые фрезы SKS G2 SKG с твердосплавными пластинами SDEW/SDET09

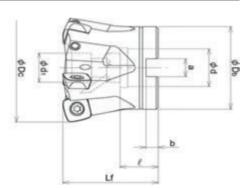
- ✓ Пластины с 4-я режущими кромками;
- Область применения: жаропрочные никелевые сплавы, титановые сплавы и твердые нержавеющие сплавы;
- ✓ Максимальная глубина фрезерования 0,9 мм.



Обозначение		Dc, мм	Lf,	Db, мм	d, MM	d1, мм	а, мм	b, мм	l, mm	Z	Пластина	Винт	Ключ
SKG-5040R-09-16	0	40	40	37	16	13,5	8,4	5,6	18	5			
SKG-7050R-09-22	0	50	50	40	22	16,5	10,4	6,3	20	7			
SKG-7052R-09-22	0	52	50	40	22	16,5	10,4	6,3	20	7	SDEW09**	DCW 20711	A 10
SKG-8063R-09-22	0	63	50	48	22	17	10,4	6,3	20	8	SDET09**	DSW-307H	A-10
SKG-8066R-09-27	0	66	50	50	27	20	12,4	7,0	22	8			
SKG-9080R-09-27	0	80	50	60	27	20	12,4	7,0	22	9			

Торцовые фрезы SKS G2 SKG с твердосплавными пластинами SPNW10

- ✓ Пластины с 4-я режущими кромками;
- ✓ Широкая область применения: стали, чугуны, закаленные стали, нержавеющие стали, титановые сплавы;
- ✓ Максимальная глубина фрезерования 1,5 мм.


Корпус серии *G-вобу* доп. информацию см. на стр. Б-11

Обозначение		Dc, мм	Lf,	Db, мм	d, мм	d1, мм	а, мм	b, мм	I, MM	Z	Пластина	Винт	Ключ
SKG-4050R-10-22	0	50	50	40	22	1,4	10,4	6,3	20	4			
SKG-5050R-10-22	0	50	50	40	22	1,4	10,4	6,3	20	5			
SKG-5052R-10-22	0	52	50	42	22	16,6	10,4	6,3	20	5			
SKG-5063R-10-22	0	63	50	48	22	17	10,4	6,3	20	5	SPNW10**		
SKG-5063R-10-27	0	63	50	48	27	20	12,4	7	22	5	SPET10**	TSW-3509H	A-15T
SKG-6063R-10-22	0	63	50	48	22	17	10,4	6,3	20	6	SPMT10**		
SKG-6063R-10-27	0	63	50	48	27	20	12,4	7	22	6			
SKG-6066R-10-27	0	66	50	50	27	20	12,4	7	22	6			
SKG-6080R-10-27	0	80	50	60	27	20	12,4	7	22	6			

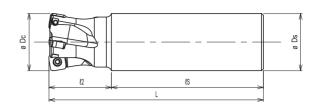
Торцовые фрезы SKS G2 SKG с твердосплавными пластинами SPNW14

- ✓ Пластины с 4-я режущими кромками;
- ✓ Широкая область применения: стали, чугуны, закаленные стали, нержавеющие стали, титановые сплавы
- Максимальная глубина фрезерования 2,5 мм.

①	Корпус серии	G-Body
лоп	информацию см. на	стр Б-11

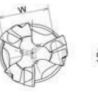
Обозначение		Dc, мм	Lf,	Db,	d, MM	d1, мм	а,	b, мм	I, MM	Z	Пластина	Винт	Ключ
SKG-4050R-14-22	0	50	50	40	22	9,6	10,4	6,3	19,05	4	SPNW14** - SPMT14**	CSW-513H	A-20
SKG-4052R-14-22	0	52	50	42	22	17	10,4	6,3	19,05	4			
SKG-4063R-14-22	0	63	50	48	22	17	10,4	6,3	20	4			
SKG-4063R-14-27	0	63	50	48	27	20	12,4	7	22	4			
SKG-5066R-14-27	0	66	50	50	27	20	12,4	7	22	5			
SKG-5080R-14-27	0	80	50	60	27	37	2,4	7	22	5			
SKG-6100R-14-32	0	100	63	70	32	45	14,4	8	25	6			

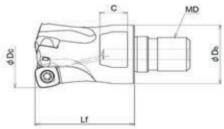
ullet складская программа; \circ производственная программа; \Box изготавливается под заказ



Серия High Feed Die Master

Концевые фрезы SKS-G2 с внутренним подводом СОЖ Ø40-66


- ✓ Пластины с 4-я режущими кромками;
- Область применения: жаропрочные никелевые сплавы, титановые сплавы и твердые нержавеющие сплавы;
- ✓ Максимальная глубина фрезерования 0,9 мм.



Обозначение		Dc,	I2, мм	ls, MM	L,	Ds,	Z	Пластина	Винт	Ключ
SKGS-3025-09-30-S25+A	0	40	40	37	16	13,5	3 4 S			
SKGS-4032-09-35-S32+A	0	50	50	40	22	16,5	4	SDE*		
SKGS-5035-09-35-S32+A	0	52	50	40	22	16,5	5	090312		A-10
SKGS-5040-09-35-S32+A	0	63	50	48	22	17	5	ZER		
SKGS-5042-09-35-S32+A	0	66	50	50	27	20	5			

Сменные головки MSG SKS G2 Ø25-42

- ✓ Пластины с 4-я режущими кромками;
- ✓ Широкая область применения: стали, чугуны, закаленные стали, нержавеющие стали, жаропрочные и титановые сплавы;
- ✓ Максимальная глубина фрезерования от 0,9 до 1,5 мм.

Обозначение		Dc, мм	Lf,	Db, мм	MD	С	w	z	Пластина	Винт	Ключ
MSG-3025-09-M12	0	25	35	23	M12	11	19	2			
MSG-4032-09-M16	0	32	43	28	M16	12	22	3	SDE*		
MSG-5035-09-M16	0	35	43	29	M16	12	22	3	090312	DSW-307H	A-10
MSG-5040-09-M16	0	40	43	32	M16	14	26	4	ZER		
MSG-5042-09-M16	0	42	43	32	M16	14	26	4			
MSG-2025-10-M12	0	25	35	23	M12	11	19	2			
MSG-3032-10-M16	0	32	43	28	M16	12	22	3	SPNW10**		
MSG-3035-10-M16	0	35	43	30	M16	14	26	3	SPET10**	TSW-3509H	A-15
MSG-4040-10-M16	0	40	43	32	M16	14	26	4	SPMT10**		
MSG-4042-10-M16	0	42	43	32	M16	14	26	4			

Пластины режущие

Рис.1

Рис.2

Рис.3

Рис.4

Рис

Рис

Рис

Рис.8

Рис.

Обозначение	Рис.	С покрытием							
Ооозначение	РИС.	JC7550	JC7518	JC8050	JC8118				
SPNW100415ZTR	1	-		0	0				
SPET100415ZPER-SM	2	0		-	-				
SPMT100415ZPER-SM	3	0		-	-				
SPMT100415ZPTR-PM	4	-		0	0				
SPMW140515ZTR	5	-		0	0				
SPMT140520ZPER-SM	6	0		-	-				
SPMT140520ZPTR-PM	7	-		0	0				
SDEW 090312 ZER	8	0	0	-	-				
SDET 090312Z DER-SM	9	0	-	-	-				

Область применения

Для стружколомов

SM - обработка нержавеющих сталей с твердостью до 250 HB и титановых сплавов;

РМ - обработка сталей твердостью до 43 HRC;

ZTR - обработка сталей с твердостью до 52 HRC и чугунов твердостью до 300 HB.

Для сплавов

ЈС7518 - обработка титана, жаропрочных сплавов, дуплексных нержавеющих сплавов;

ЈС7550 - обработка нержавеющих сталей и титановых сплавов;

JC8050 - обработка сталей для изготовления пресформ с твердостью до 30 HRC;

JC8118 - обработка сталей и сплавов с твердостью до 50 HRC, а также обработки чугуна.

Рекомендации по выбору базовых режимов резания для серии SKS GII

Для торцовых фрез SKG с пластинами SDEx090312xxx

Обрабатываемый материал	Твердость Сплав		Ар, мм	Vс, м/мин	Fz , мм/зуб
Нержавеющие аустенитные сплавы	менее 250НВ	JC7550	0,3-0,8	125-150	0,85-1,0
Нержавеющие ферритные, мартенситные сплавы	до 300НВ	JC7550	0,3-0,8	155-190	0,85-1,0
Нержавеющие дуплексные сплавы	до 300НВ	до 300HB JC7518 (JC7550)		85-100	0,25-0,3
Титановые сплавы	35-43HRC	JC7518 (JC7550)	0,3-0,8	50-60	0,5-0,6
Жаропрочне сплавы	35-43HRC	JC7518 (JC7550)	0,2-0,5	25-30	0,5-0,6

Для торцовых фрез SKS GII SKG с пластинами SPx100415xxx

Обрабатываемый материал	Твердость	Сплав	Ар, мм	Vс, м/мин	Fz , мм/зуб
Углеродистые стали	менее 250НВ	JC8050 (JC8118)	0,5-1,5	130-160	1,4-1,8
Штамповые стали	менее 255НВ	JC8050 (JC8118)	0,5-1,5	130-160	1,4-1,8
Стали для прессформ	30-36HRC	JC8050 (JC8118)	0,5-1,5	130-160	1,4-1,8
Стали для прессформ	38-43HRC	JC8118 (JC8050)	0,5-1,2	80-110	1,4-1,5
Закаленные стали	42-52HRC	JC8118	0,6-1,0	100	1,2-1,4
Чугуны	менее 300НВ	JC8118	0,5-1,5	180	1,5-1,8
Нержавеющие стали	менее 250НВ	JC7550	0,4-1,0	100-150	1,0-1,4
Титановые сплавы	35-50HRC	JC7550	0,4-1,0	60	0,4-0,6

Для торцовых фрез SKS GII SKG с пластинами SPMx1405xxx

Обрабатываемый материал	Твердость Сплав		Ар, мм	Vс, м/мин	Fz , мм/зуб
Углеродистые стали	менее 250НВ	JC8050 (JC8118)	0,6-2,0	100-150	1,4-1,8
Штамповые стали	менее 255НВ	JC8050 (JC8118)	0,6-2,0	100-150	1,4-1,8
Стали для прессформ	30-36HRC	JC8050 (JC8118)	0,6-2,0	100-150	1,4-1,8
Стали для прессформ	38-43HRC	JC8118 (JC8050)	0,7-1,6	80-100	1,4-1,5
Закаленные стали	42-52HRC	JC8118	0,5-1,0	70-90	0,7-1,2
Чугуны	менее 300НВ	JC8118	0,6-2,0	160-180	1,4-1,8
Нержавеющие стали	менее 250НВ	JC7550	0,9-1,5	100-150	1,0-1,4
Титановые сплавы	35-50HRC	JC7550	0,7-1,3	60	0,4-0,6

Для концевых фрез SKGS с пластинами SDEx090312xxx

Обрабатываемый материал	Твердость Сплав		Ар, мм	Vс, м/мин	Fz , мм/зуб
Нержавеющие аустенитные сплавы	менее 250НВ	JC7550	0,8	150	1,2
Нержавеющие ферритные, мартенситные сплавы	до 300НВ	до 300НВ JC7550		190	1,2
Нержавеющие дуплексные сплавы	до 300НВ	300HB JC7518 (JC7550)		100	0,36
Титановые сплавы	35-43HRC	JC7518 (JC7550)	0,8	60	0,72
Жаропрочне сплавы	35-43HRC	JC7518 (JC7550)		30	0,72

U Глубина резания Ар и подача на зуб Fz зависит от диаметра фрезы, размера режущей пластины и вылета инструмента. Ширина резания Ае ≈ 2/3 от ширины фрезы

Рекомендации по выбору базовых режимов резания для серии SKS GII

Для головок MSG с пластинами SDEx090312xxx

Обрабатываемый материал	Твердость Сплав		Ар, мм	Vс, м/мин	Fz , мм/зуб
Нержавеющие аустенитные сплавы	менее 250НВ	250HB JC7550		125-150	0,8-1,0
Нержавеющие ферритные, мартенситные сплавы	до 300НВ JC7550		0,6-0,8	150-190	0,8-1,0
Нержавеющие дуплексные сплавы	до 300HB JC7518 (JC7550)		0,6-0,8	85-100	0,25-0,3
Титановые сплавы	35-43HRC	JC7518 (JC7550)	0,6-0,8	50-60	0,5-0,6
Жаропрочне сплавы	35-43HRC	JC7518 (JC7550)	0,4-0,5	25-30	0,5-0,6

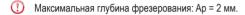
Для головок MSG с пластинами SPxx100415xxx

Обрабатываемый материал	Твердость	Сплав	Ар, мм	Vс, м/мин	Fz , мм/зуб
Углеродистые стали	менее 250НВ	JC8050 (JC8118)	0,6-1,0	180	1,5
Штамповые стали	менее 255НВ	JC8050 (JC8118)	0,6-1,0	150	1,5
Стали для прессформ	30-36HRC	JC8050 (JC8118)	0,6-1,0	150	1,5
Стали для прессформ	38-43HRC	JC8118 (JC8050)	0,6-1,0	110	1,3
Закаленные стали	42-52HRC	JC8118	0,3-0,6	100	1,2
Чугуны	менее 300НВ	JC8118	0,8-1,2	180	1,5
Нержавеющие стали	менее 250НВ	JC7550	0,6-1,0	130-150	0,75-1,0
Титановые сплавы	35-50HRC	JC7550	0,6-1,0	60	0,5-0,6

О Глубина резания Ар и подача на зуб Fz зависит от диаметра фрезы, размера режущей пластины и вылета инструмента. Ширина резания Ае ≈ 2/3 от ширины фрезы

примечания:

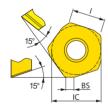
- 1. Окончательные режимы резания определяются в зависимости от жесткости оборудования и вылета инструмента;
- 2. В случае возникновения вибраций рекомендуется уменьшить глубину резания или частоту вращения шпинделя и подачу;
- Если станок имеет недостаточную мощность привода, рекомендуется уменьшить глубину резания или частоту вращения шпинделя и подачу;
- 4. Используйте охлаждение воздухом;
- 5. При обработке материалов с твердостью 50 55 HRC (например, штамповых сталей) необходимо уменьшать режимы резания на 30% от рекомендуемых;
- 6. При вылете инструмента более 250 мм используйте соответствующие корпуса.


О Более подробную информацию по режимам резания смотрите на сайте www.s-t-group.com в каталоге DIJET.

Серия SKS PT

Торцевые фрезы серия SKS PT Ø 50-200 мм

- Пластины с 5-ю режущими кромками, острой геометрией и зачистной кромкой;
- Максимальная глубина фрезерования 2 мм;
- Наличие зачистной кромки на режущей пластине позволяет использовать фрезы не только для черновой, но и для получистовой обработки (при условии если подача на оборот будет меньше ширины зачистной кромки).
- ✓ Диапазон подач 0,3 2,0 мм/зуб;
- ✓ Подходит для обработки материалов групп Р, М и К, возможно применение для материалов групп N и S;
- ✓ Может использоваться в условиях нежесткой технологической системы.



Обозначение		Dc, мм	d, мм	Lf,	Ар, мм	Z	Пластина	Винт	Ключ
SKS PT-A22-50-4-PD09	0	50	22	40	2,0	4			
SKS PT-A22-63-5-PD09	0	63	22	40	2,0	5			
SKS PT-A27-80-6-PD09	0	80	27	50	2,0	6			
SKS PT-B32-100-7-PD09	0	100	32	50	2,0	7	PD*0905*	SA0411	T15P
SKS PT-B40-125-8-PD09	0	125	40	63	2,0	8			
SKS PT-C40-160-10-PD09	0	160	40	63	2,0	10			
SKS PT-C60-200-12-PD09	0	200	60	63	2,0	12			

Пластины режущие

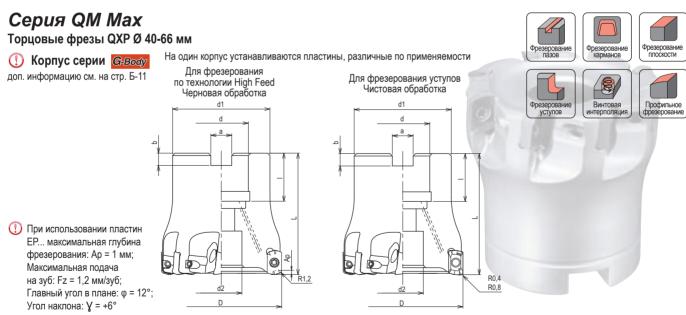
	Р	•	•	•	•
Mble	М	•	•	•	
иаль	K	•			•
Обрабатываемые материалы	N		0	0	
06pi	S		0	0	
	Н				

	Размеры							
Обозначение	I	IC	s	BS	CU3070	PY2571	PY1370	PP1572
PDKX0905ZDER-M	9,0	13	5,1	1,7	•	•	•	•

- Рекомендуется применять попутное фрезерование, следовательно, движение инструмента по траектории должно осуществляться против часовой стрелки.
- ✓ При фрезеровании с врезанием и винтовой интерполяцией необходимо уменьшить значение минутной подачи на 30% и более по сравнению с рекомендованным значением в таблице каталога.
- ✓ При фрезеровании с осевой подачей необходимо уменьшить минутную подачу на 50% и более от рекомендованного значения.

Обрабатываемый материал	Твердость	Сплав	Ар, мм	Vс, м/мин	Fz , мм/зуб
Углеродистые стали	менее 250НВ	CU3070 PY2571 PY1370 PP1572	0,5-1,7	170 (120-250)	0,5-1,8
Штамповые стали	менее 255НВ	CU3070 PY2571 PY1370 PP1572	0,5-1,5	150 (100-200)	0,5-1,4
Стали для прессформ	30-36HRC	CU3070 PY2571 PY1370 PP1572	0,3-1,0	80 (70-90)	0,5-1,0
Чугуны	менее 300НВ	CU3070 PP1572	0,5-1,9	170 (160-180)	0,8-1,6
Нержавеющие стали	менее 250НВ	CU3070 PY2571 PY1370	0,3-1,2	110 (75-140)	0,4-1,2
Жаропрочные и титановые сплавы	35-50HRC	PY2571 PY1370	0,3-1,0	30 (20-35)	0,4-1,0

Quick and Mini - QM



Новое поколение фрез для работы с высокой подачей (high feed). Серии QM mill и QM max (диапазон Ø10-66мм).

Универсальные фрезы предназначены для высокопроизводительной обработки всех основных групп материалов, в том числе титановых сплавов и закаленных сталей по технологии «high feed» . Идеальное решение для черновой обработки на станках с невысокими характеристиками по мощности и жесткости.

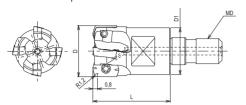
Особенности и преимущества: Основные отличия от фрез серии SKS: другая, более компактная форма пластин, позволяющая при сохранении возможности работы со сверхвысокими подачами, разместить большее количество режущих пластин, что позволяет ещё больше увеличить минутную подачу.

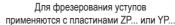
- ✓ При применении пластин для высокопроизводительной обработки рабочая глубина резания (ар) для фрез QM mill составляет 0.3 мм. Для QM max 1.0 мм.
- ✓ Высокая производительность за счет большого количества зубьев при малом диаметре инструмента. (При обработке конструкционной стали фрезой QM max Ø32мм была достигнута производительность 144см³/мин.)
- Подходит для фрезерования труднообрабатываемых материалов благодаря геометрии, обеспечивающей низкие силы резания.
- ✓ На один корпус могут устанавливаться пластины для работы с высокой подачей или для традиционного фрезерования.
- ✓ Выпускаются, в основном, в модульном исполнении. Фрезерная головка с хвостовиком из твердого сплава либо из инструментальной стали. Для Ø40-52 исполнение в виде торцевых головок. Хвостовик имеет обнижение относительно режущей части, что позволяет фрезеровать уступы с большой глубиной.
- ✓ Высокоточное исполнение корпуса (G-Body) позволяет производить как черновую, так и чистовую обработку.
- У Все корпуса фрез имеют высокоэффективную систему подвода охлаждающих средств (СОЖ) непосредственно к каждой пластине.
- ✓ Применяются для выполнения всех основных типов фрезерных операций: обработка фасонных поверхностей, прорезка пазов, работа по круговой интерполяции и выборка глубоких карманов.
- ✓ При использовании с твердосплавным хвостовиком позволяет производить высокоэффективную обработку без вибраций с большим вылетом инструмента.

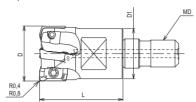
Обозначение		D, мм	L,	d, мм	d ₁ , мм	а,	b, мм	I, мм	d ₂ , мм	Z	Пластина	Винт	Ключ
QXP-6040R-16	0	40	45	16	35	8,4	5,6	18	14	6			
QXP-7040R-16	0	40	45	16	35	8,4	5,6	18	14	7			
QXP-7050R-22	0	F0	50	22	40	10,4	6,3	20	17	7	EP**1003**Z*R		
QXP-8050R-22	0	50	50	22	40	10,4	6,3	20	17	8	ZPMT1003**ZER-**	DSW-2563H	A-08
QXP-8052R-22	0	52	50	22	40	10,4	6,3	20	17	8	YPHW1003**ZER-**		
QXP-8063R-22	0	63	50	22	48	10,4	6,3	20	17	8			
QXP-8066R-27	0	66	50	27	48	12,4	7	22	20	8			

• складская программа; ○ производственная программа; □ изготавливается под заказ

Корпуса поставляются без пластин

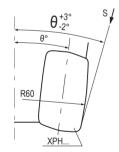




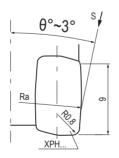

Серия QM Max

Фрезерные головки MQX Ø 16-40 мм

Для фрезерования с высокими подачами применяются с пластинами EP...



Обозначение		D,	D1, мм	L,	MD	Z	Момент затяжки, Нм	Пластина	Винт	Ключ
MQX-2016-M8	0	16	14	23	M8	2	16			
MQX-2017-M8	0	17	14	23	M8	2	-			
MQX-3020-M10	0	20	18	30	M10	3	20		TSW-2556H	
MQX-4020-M10	0	20	18	30	M10	4	20			
MQX-4021-M10	0	21	18	30	M10	4	20			
MQX-4025-M12	0	25	22,5	35	M12	4	20			
MQX-5025-M12	0	25	22,5	35	M12	5	20			
MQX-4026-M12	0	26	22,5	35	M12	4	20	EP**1003**Z*R		
MQX-5026-M12	0	20	22,5	35	M12	5	20	ZPMT1003**ZER-**		A-08
MQX-5030-M16	0	30	29	43	M16	5	25	YPHW1003**ZER-**		
MQX-5032-M16	0	32	29	43	M16	5	25		DSW-2563H	
MQX-6032-M16	0	32	29	43	M16	6	25		D944-5309U	
MQX-5035-M16	0	35	29	43	M16	5	25			
MQX-6035-M16	0	აა	29	43	M16	6	25			
MQX-6040-M16	0	40	32	43	M16	6	25			
MQX-7040-M16	0	40	32	43	M16	7	25			
MQX-6042-M16	0	42	32	43	M16	6	25			


Серия QM Мах

Фрезерные головки MQT (бочкообразные)

Для чистовой обработки наклонных поверхностей

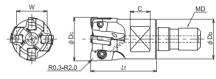
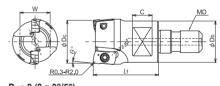



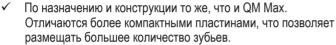
Рис.1 ($\theta = 0^{\circ}$)

Угол наклона θ°	Обозначение		Рис.	Кол. пластин	Dc, мм	Lf,	Db, мм	MD,	С,	W,	Пластина	Винт	Ключ
	MQT-2016A00-M8	0	1	2	16	23	14	M8	8	12		TSW-2556H	
0°	MQT-4020A00-M10	0	1	4	20	30	18	M10	9	14		TSW-2556H	
0.	MQT-5025A00-M12	0	1	5	25	35	22,5	M12	10	17		DSW-2563H	
	MQT-6035A00-M16	0	1	6	35	43	29	M16	12	22	XP**100308ZER-R	DSW-2563H	A 00
20	MQT-2016A03-M8	0	2	2	16	23	14	M8	8	12	YPHW1003**Z*R-** ZPMT1003**ZER-PL	TSW-2556H	A-08
3°	MQT-2020A03-M10	0	2	2	20	30	18	M10	9	14		TSW-2556H	
Γ0	MQT-2016A05-M8	0	2	2	16	23	14	M8	8	12		TSW-2556H	
5°	MQT-2020A05-M10	0	2	2	20	30	18	M10	9	14		TSW-2556H	

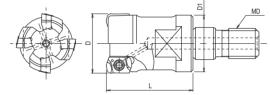
При оснащении корпусов фрез пластинами типа XPH... (с радиусной режущей кромкой) фрезы с углами θ = 3° могут обрабатывать наклонные плоскости в диапазоне от 1° до 6°. При θ = 5° - в диапазоне от 3° до 8°. При θ = 0° - до 3°.

Корпуса поставляются без пластин

[•] складская программа; ○ производственная программа; □ изготавливается под заказ

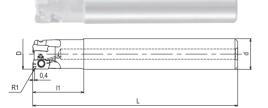

Пример использования фрезерных головок MQT

Чистовое построчное фрезерование наклонной плоскости


Серия QM Mill

Сменные головки MPM Ø 10-32 мм

- ✓ Высокая производительность за счет большого количества зубьев при малом диаметре инструмента.
- ✓ Подходит для фрезерования труднообрабатываемых материалов благодаря геометрии, обеспечивающей низкие силы резания.
- Отсутствие вибраций и высокая износостойкость при использовании с твердосплавным хвостовиком.


Обозначение		D, мм	D1, мм	L,	MD	Z	Момент затяжки, Нм	Пластина	Винт	Ключ
MPM-2010-M6	0	10	9,5	18	M6	2	8			
MPM-2011-M6	0	11	9,7	18	M6	2	8			
MPM-3012-M6	0	12	11,2	20	M6	3	8			
MPM-3013-M6	0	13	11,5	20	M6	3	8			
MPM-4016-M8	0	16	15	23	M8	4	16	F0**0000**7*D		
MPM-4017-M8	0	17	15	23	M8	4	16	EO**0602**Z*R ZOMT0602**ZER	DSW-1840H	A-06
MPM-5020-M10	0	20	19	30	M10	5	16	ZOWITOOOZ ZEIX		
MPM-5021-M10	0	21	19	30	M10	5	16			
MPM-6025-M12	0	25	23,6	35	M12	6	20			
MPM-7030-M16	0	30	29	43	M16	7	25			
MPM-8032-M16	0	32	29	43	M16	8	25			

Информацию о цилиндрических хвостовиках см. на стр. Б-118-120


Информацию об оправках для фрезерных головок см. в разделе Е.

Корпус серии G-Воду

Концевые фрезы серии РМЕ Ø 10-14 мм

Обозначение		D, мм	L,	d, мм	I1, мм	Z	Момент затяжки, Нм	Пластина	Винт	Ключ
PME2010S10	0	10	80	10	20	2	0,4			
PME3012S12	0	12	80	12	20	3	0,4			
PME3014S12	0	14	80	12	20	3	0,4	EO**0602**Z*R	DCW 1040H	A 06
PME2011S10-LS	0	11	120	10	33	2	0,4	ZOMT0602**ZER	DSW-1840H	A-06
PME3013S12-LS	0	13	120	12	39	3	0,4			
PME3014S12-LS	0	14	120	12	42	3	0,4			

ullet складская программа; \circ производственная программа; \Box изготавливается под заказ

Корпуса поставляются без пластин

Пример использования фрез QM Mill

Высокоскоростная прецизионная обработка

Пластины режущие

Для работы с высокими подачами по технологии "High Feed", большой передний угол, низкие усилия резания

1 1	· · · · · · · · · · · · · · · · · · ·	-11-				3			11.1	, , ,
	Обозначение	Α,	В,	T,	R,	θ	С	покрытие	М	A
≣	Обозначение	ММ	MM	ММ	ММ	"	JC8118	JC8050	JC7560	
₩ W	EOMT060210ZER	6,5	4,3	2,5	1	13°	0	0	0	
	EOMT060220ZER	6,5	4,3	2,5	2	13°	0	0	-	R
Мах	Обозначение	А,	В,	T,	R,	θ	С	покрытие	М	A
Ξ		101101	101101	IVIIVI	"		JC8118	JC8050	JC7560	
S	EPMT100312ZER	10	6	3,2	1,2	11°	0	0	0	B 0°
	EPMT100320ZER	10	6	3,2	2,0	11°	0	-	-	<u></u>

Для работы с высокими подачами по технологии "High Feed", более прочная геометрия

Mill	Обозначение	A,	В,	T,	R,	θ	С	покрытие	М	
중							JC8118	JC8050	JC7560	
	EOMW060210ZER	6,5	4,3	2,5	1	13°	0	0	0	R
Max	Обозначение	A,	В,	T,	R,	θ	С	покрытие	М	A
S							JC8118	JC8050	JC7560	
S	EPMW100312ZER	10	6	3,2	1,2	11°	0	0	-	B
	EPMW100312ZTR	10	6	3,2	1,2	11°	0	0	0	

Для работы с высокими подачами по технологии "High Feed", для обработки закаленных материалов

• •	•					•	,	•		•
	Обозначение	Α,	Е	3,	T,	R,	θ	С покр	ытием	A
≣	Ооозначение	ММ	М	М	мм	мм	0	JC8118	DH102	
Ş	EOHW060210ZTR	6.5	4	.3	2.5	1.0	11°	0	0	
	EOHW060220ZTR	6.5	4	.3	2.5	2.0	11°	0	0	RX
						1				~
Max	Обозначение	A, MM	В,	T,	R,	θ	С	покрытие	М	
동			101101	"""	101101		JC811	8	DH102	
	EPHW100316ZTR	10	6	3.2	1.6	11°	0		0	

Пластины режущие

Для обработки уступов

Применение пластин режущих ZOMT и ZPMT позволяет производить операции фрезерования уступов по классической технологии.

При комплектации данными пластинами назначение и область применения примерно соответствуют фрезам SIC «Side Chiper».

Кроме того, их используют для фрезерования места, в углу между вертикальной и горизонтальной плоскостями, которое образуется после работы пластинами ЕОМТ и ЕРМТ (для высоких подач).

На периферии режущей кромки пластин выполнен выступ 0,02 (для фрез QM Mill) и 0,03 (для фрез QM Max), это сделано для того, чтобы при «подборе» радиуса не работать всей плоскостью пластины и не оставлять рисок.

Режущие (зачистные) кромки на торце и периферии пластины образуют между собой точный угол 90°.

Такая геометрия позволяет за один проход производить операцию по оформлению места стыка плоскостей уступа.

	Обозначение	A,	В,	T,	R,	Δ	С покр	ытием	A
E E	Обозначение	MM	мм	ММ	мм	0	JC8118	JC8050	
Ø	ZOMT060202ZER-PL	6,62	4,3	2,7	0,2	13°	0	0	
G	ZOMT060204ZER-PL	6,62	4,3	2,7	0,4	13°	0	0	R P
	ZOMT060208ZER-PL	6,62	4,3	2,7	0,8	13°	0	0	

	Обозначение	A,	В,	T,	R,	θ		С покр	ытием		Без покр	Кермет	
	Обозначение	ММ	ММ	ММ	ММ	0	JC7518	JC8118	JC8050	DH102	FC18	CX75	
	ZPMT100304ZER-SL	10,08	6	3,4	0,4	11°	0	-	-	-	-	-	
	ZPMT100308ZER-SL	10,08	6	3,4	0,8	11°	0	-	-	-	-	-	
Мах	ZPMT100320ZER-SL	10,08	6	3,4	2,0	11°	0	-	-	-	-	-	
QM I	ZPMT100304ZER-PL	10,08	6	3,4	0,4	11°	-	0	0	0	-	0	
Ø	ZPMT100308ZER-PL	10,08	6	3,4	0,8	11°	-	0	0	0	-	0	R
	ZPMT100320ZER-PL	10,08	6	3,4	2,0	11°	-	0	0	0	-	0	h
	ZPMT100304ZER-NL	10,08	6	3,4	0,4	11°	-	-	-	-	0	-	
	ZPMT100308ZER-NL	10,08	6	3,4	0,8	11°	-	-	-	-	0	-	
	ZPMT100320ZER-NL	10,08	6	3,4	2,0	11°	-	-	-	-	0	-	

Информацию о сплавах см. стр. Б-121-123

Пластина серии "Mirror inserts" для чистовой обработки

Пластина режущая формы YPHW «MIRROR insert» предназначена для чистовой обработки уступов.

Пластина имеет зачистные кромки на торцевой и периферийной поверхностях, применяется для построчного чистового фрезерования с маленькой глубиной резания при обработке горизонтальных и вертикальных поверхностей.

Используется с различными схемами фрезерования; торцевое фрезерование плоскостей, обработка стенки периферийной частью и фрезерование с вертикальной подачей (плунжерное фрезерование).

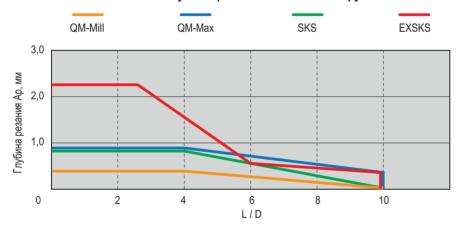
Фрезы, оснащенные данными пластинами, по назначению примерно соответствуют фрезам «Mirror Radius» и «Finish-One».

	Обозначение	A, B, T,		B, T, R,		۵	С покр	ытием	<i>▶</i> A
	Ооозначение	MM	ММ	ММ	мм	0	DH102	JC8015	
8	YOHW060203ZER-12	6,5	4,3	2,6	0,3	13°	0	0	
G	YOHW060205ZER-12	6,5	4,3	2,6	0,5	13°	0	0	2 100
	YOHW060208ZER-12	6,5	4,3	2,6	0,8	13°	0	0	R 1.9 T

	05	Α,	В,	T,	R,	θ	С покр	ытием	Кермет	CBN		A
	Обозначение	MM	MM	мм	MM	8	DH102	JC8015	CX75	JBN795		
	XPHW100308ZER-R	10,06	6	3,35	0,8	11°	0	0	0	-	<u>k</u>	R60
	XPHT100308ZER-R	10,06	6	3,35	0,8	11°		0	0	-		A N
Мах	YPHW100303ZER-15	10,06	6	3,35	0,3	11°	0	0	0	-		R60
Ö	YPHW100308ZER-15	10,06	6	3,35	0,8	11°	0	-	0	-		
	YPHW100308ZER-F	10,06	6	3,35	0,8	11°	-	0	-	-	R 3	
	YPHW100308ZTR-F1	10,06	6	3,35	0,8	11°	-	-	-	0		
	YPHW100320ZER-24	10,06	6	3,35	2,0	11°	0	0	-	-	R 3.0	

Информацию о сплавах см. стр. Б-121-123

ullet складская программа; \circ производственная программа; \Box изготавливается под заказ



Рекомендации по выбору режимов резания при фрезеровании круговой интерполяцией для серий QM Mill и QM Max

_		_			Фрезеровани	е с врезанием	Фрезерование с винт	говой интерполяцией
пла	азмер істины і, мм	Ø инструмента I, мм	Эффективный рабочий Ø D _{1,} мм	Макс. глубина фрезерования Ар, мм	Макс. угол врезания: ⊖°	Общая длина резания при макс. Ар: L, мм	Мин. Ø обрабатываемого отвестия: Dh, мм	Макс. Ø обрабатываемого отвестия: Dh, мм
	6,5	10	6.6	0.3	2° 18′	7.5	15	18
	6,5	11	7.6	0.3	1° 54'	9	17	20
	6,5	12	8.5	0.3	1° 36′	10.7	19	22
	6,5	13	9.5	0.3	1° 24'	12.3	21	24
≡	6,5	16	12.5	0.4	1°	22.9	27	30
QM Mill	6,5	17	13.5	0.4	0° 54'	25.5	29	32
ø	6,5	20	16.5	0.4	0° 45'	30.6	35	38
	6,5	21	17.5	0.4	0° 42'	32.7	37	40
	6,5	25	21.5	0.4	0° 30'	45.8	45	48
	6,5	30	26.5	0.4	0° 27'	50.9	55	58
	6,5	32	28.5	0.4	0° 24'	57.3	59	62
	10	16	10.2	1	1° 48′	31.8	22	30
	10	20	14.1	1	1° 24'	40.9	30	38
	10	25	19.1	1	1°	57.3	40	8
ă	10	32	26.1	1	0° 42'	81.8	54	62
QM Max	10	40	34.1	1	0° 30'	114.6	70	78
ਰ	10	40	34.1	1	0° 30'	114.6	70	78
	10	50	44.1	1	0° 24'	143.2	90	98
	10	50	44.1	1	0° 24'	143.2	90	98
	10	52	46.1	1	0° 21'	163.7	94	102

Зависимость глубины резания от вылета инструмента


Обрабатываемый материал:

Углеродистая сталь

Фрезы серии QM-Mill имеют самое большое количество зубьев и соответственно наибольшую минутную подачу. В следствии чего даже при меньшей глубине резания производительность фрез QM-Mill в диапазоне 10-16 мм превосходит фрезы QM-Мах и SKS, а в диапазоне 20-25 мм имеют те же показатели как и фрезы серии SKS.

Пример использования фрез QM MAX

Фрезерование титана фрезами QM Max

[•] складская программа; о производственная программа; приготавливается под заказ

Рекомендации по выбору базовых режимов резания фрез серии QM Max

С пластинами EPMT/W для работы с высокими подачами по технологии "High Feed"

Обрабатываемый материал	Твердость	Сплав	Ар, мм	Ае, мм	Vс, м/мин	Fz, мм/зуб
Углеродистые стали (сталь 50)	менее 250НВ	JC7560 (JC8050)(JC8118)	0,35-1		150-180	0,6-0,8
Штамповые стали (4X5MФ1C, 1.2379)	менее 255НВ	JC7560 (JC8050)(JC8118)	0,35-1		150-180	0,6-0,8
Штамповые стали (40ХГМА)	30-36 HRC	JC7560 (JC8050)(JC8118)	0,35-0,8		150-180	0,6-0,8
Закаленные штамповые стали (4Х5МФ1С, 1.2379)	38-43 HRC	JC8050 (JC8118)	0,2-0,6		80-95	0,6-0,7
Закаленные штамповые стали (4Х5МФ1С, 1.2379)	42-52 HRC	JC8118 (JC8050)	0,2-0,4	до 2/3	50-70	0,4-0,5
Закаленные штамповые стали (4Х5МФ1С, 1.2379)	55-62 HRC	55-62 HRC DH102 (EPHW) 0,1-0,15 от диаметра фрезы				0,1-0,15
Серые (Сч25,Сч30) и высокопрочные чугуны (Вч60-2, Вч79-2)	менее 300НВ	JC8118 (JC7560)	0,5-1	4,700	110-150	0,7-1
Нержавеющие стали (08Х18Н10, 1.4401)	менее 250НВ	JC7560 (JC8050)	0,35-0,8		150-155	0,6-0,8
Титановые сплавы	35-43HRC	JC7560 (JC8050)(JC8118)	0,2-0,8		50-60	0,4
Жаропрочные сплавы	35-43HRC	JC8118 (JC8050) (JC7560)	0,2-0,8		25-30	0,3

С пластинами ZPMT для обработки уступов

Обрабатываемый материал	Твердость	Сплав	Ар, мм	Ае, мм	Vс, м/мин	Fz, мм/зуб
Углеродистые стали (сталь 50)	менее 250НВ	JC8118 (JC8050) CX75	6		130-160	0,1-0,12
Штамповые стали (4X5MФ1C, 1.2379)	менее 255НВ	JC8118 (JC8050)	6	3	120-150	0,08-0,1
Закаленные штамповые стали (4Х5МФ1С, 1.2379)	30-43 HRC	JC8050 (JC8118)	5		95-120	0,08-0,1
Закалённые штамповые стали (4Х5МФ1С)	42-52HRC	JC8118 (DH102)	3,5	4,3	95-110	0,09-0,12
Закалённые штамповые стали (4Х5МФ1С)	55-62HRC	DH102	2,5	4,8	65-77	0,08-0,1
Серые (Сч25,Сч30) и высокопрочные чугуны (Вч60-2, Вч79-2)	менее 300НВ	JC8118 DH102	7		120-150	0,1-0,12
Нержавеющие стали (08Х18Н10, 1.4401)	менее 250НВ	JC8050 JC8118 (JC7518)	5,5	2	120-150	0,08-0,1
Титановые сплавы	35-43HRC	JC7518	5]	55-65	0,12-0,15
Жаропрочные сплавы	35-43HRC	JC7518	5		20-30	0,12-0,15
Алюминиевые сплавы	50-110HB	FC18	2-5	2-24	300-650	0,1-0,2

Поправочные коэффициенты на глубину (Ар) и ширину (Ае) резания в зависимости от величины диаметра и длины вылета инструмента при использовании пластин ZPMT

					Диаметр инс	трумента, мм					
Вылет LxD	16-20		25		3	32	4	0	50-52		
	Ар	Ae	Ар	Ae	Ар	Ae	Ар	Ae	Ар	Ae	
≤3	1	0.0	1	0,9	1	1.0	1	1,5	1	2	
≤4		0,8	'	0,9	'	1,2	0,8	1,3	0,8	1,6	
≤5	0,65	0.65	0.5	0.0	0.65	0,8	1	0,65	0,8	0,65	1
≤6		0,5	0,8	0,65	0,65	0,65					
≤8	0,5	0.3	0,65	0,65							
≤10		0,3									

В таблице приведены поправочные коэффициенты, на которые необходимо умножать значения глубины (Ар) и ширины (Ае) резания по таблице. Более полные рекомендации по применяемости режимов резания см. каталог Dijet.

С пластинами YPHW для чистового фрезерования (фрезерование плоскостей, обработка торцем)

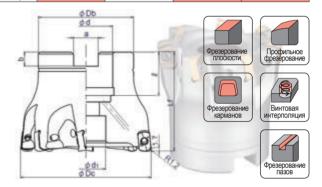
Обрабатываемый материал	Твердость	Сплав	Ар, мм	Ае, мм	Vс, м/мин	Fz, мм/зуб
Углеродистые стали (сталь 50)	менее 250НВ	CX75 (DH102)	0,2		130-200	0,1-0,15
Штамповые стали (4X5MФ1C, 1.2379)	менее 255НВ	CX75 (DH102)	0,2		100-180	0,1-0,15
Штамповые стали (40ХГМА)	30-36 HRC	DH102	0,2		140-220	0,1-0,15
Закаленные штамповые стали (4Х5МФ1С, 1.2379)	38-43 HRC	DH102	0,2	0.5 - 1	130-200	0,1-0,12
Закаленные штамповые стали (4Х5МФ1С, 1.2379)	42-52 HRC	DH102	0,2	от диаметра	80-100	0,1
Закаленные штамповые стали (4Х5МФ1С, 1.2379)	55-62 HRC	DH102	0,2	фрезы	50-70	0,05-0,07
Серые (Сч25,Сч30) и высокопрочные чугуны (Вч60-2, Вч79-2)	менее 300НВ	DH102	0,2		130-200	0,1-0,2
Нержавеющие стали (08Х18Н10, 1.4401)	менее 250НВ	DH102	0,2		120-180	0,1-0,15
Титановые сплавы	35-43HRC	DH102	0,2		30-50	0,1-0,15

ullet складская программа; \circ производственная программа; \Box изготавливается под заказ

Рекомендации по выбору базовых режимов резания фрез серии QM Max

С пластинами YPHW для чистового фрезерования (фрезерование стенок, обработка периферией)

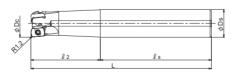
Обрабатываемый материал	Твердость	Сплав	Ар, мм	Ае, мм	Vс, м/мин	Fz, мм/зуб
Углеродистые стали (сталь 50)	менее 250НВ	CX75 (DH102) (JC8015)	0,7-2,0		450-650	0,1-0,15
Штамповые стали (4Х5МФ1С, 1.2379)	менее 255НВ	CX75 (DH102) (JC8015)	0,7-2,0		350-450	0,1-0,15
Штамповые стали (40ХГМА)	30-36 HRC	JC8015 (DH102)	0,7-2,0		350-450	0,1-0,15
Закаленные штамповые стали (4Х5МФ1С, 1.2379)	38-43 HRC	JC8015 (DH102)	0,7-2,0		350-400	0,08-0,12
Закаленные штамповые стали (4Х5МФ1С, 1.2379)	42-52 HRC	JC8015 (DH102)	1,0-1,5	≤ 0,2	170-200	0,08-0,1
Закаленные штамповые стали (4Х5МФ1С, 1.2379)	55-62 HRC	DH102	0,7-1,0		150-180	0,05-0,1
Серые (Сч25,Сч30) и высокопрочные чугуны (Вч60-2, Вч79-2)	менее 300НВ	JC8015 (DH102)	0,7-1,5		450-550	0,1-0,15
Нержавеющие стали (08Х18Н10, 1.4401)	менее 250НВ	JC8015 (DH102)	0,7-1,5		350-450	0,1-0,15
Титановые сплавы	35-43HRC	JC8015 (DH102)	0,7-2,0		70-90	0,08-0,12


С пластинами YPHW Для чистового фрезерования (фрезерование стенок по технологии с осевой подачей "Плунжерное фрезерование")

Обрабатываемый материал	Твердость	Сплав	Шаг смещения Рf, мм	Ае, мм	Vс, м/мин	Fz, мм/зуб
Углеродистые стали (сталь 50)	менее 250НВ		0,5-1,1		350-470	0,08-0,15
Штамповые стали (4Х5МФ1С, 1.2379)	менее 255НВ	JC8015	0,5-1,1	≤ 0,2	300-420	0,08-0,15
Закаленные штамповые стали (4Х5МФ1С, 1.2379)	30-36 HRC	(DH102)	0,5-1,1	≥ 0,2	250-360	0,07-0,12
Закаленные штамповые стали (4Х5МФ1С, 1.2379)	38-43 HRC		0,5-1,1		180-260	0,05-0,12
Закаленные штамповые стали (4Х5МФ1С, 1.2379)	42-52 HRC	DH102 (JC8015)	0,5-1,1	≤ 0,15	120-180	0,05-0,1
Серые (Сч25,Сч30) и высокопрочные чугуны (Вч60-2, Вч79-2)	менее 300НВ	JC8015 (DH102)	0,5-1,1	≤ 0,2	450-570	0,12-0,2

Серия QM MAX G II

Торцовые фрезы GMX Ø 50-66 мм

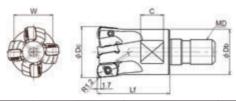

- Фрезы для высокопроизводительной черновой обработки со сверхвысокими подачами;
- Двухсторонние пластины повышенной прочности, толщиной 4 мм;
- ✓ Сплавы с новым PVD покрытием JC7560 для обычной стали и стали для прессформ с твердостью до 35HRC и JC8118 для обработки закаленной стали с твердостью до 50HRC.

Обозначение		Dc, мм	Lf,	Db, мм	d, мм	d1, мм	а, мм	b, мм	I, мм	Z	Пластина	Винт	Ключ
GMX-7050R-22	0	50	50	40	22	17	10,4	6,3	20	7			
GMX-7052R-22	0	52	50	40	22	17	10,4	6,3	20	7	ENDALIA 00 440	TSW-2567H	A-08
GMX-7063R-22	0	63	50	48	22	17	10,4	6,3	20	7	ENMU100412 ZER-PH		
GMX-7066R-22	0	66	50	48	22	17	10,4	6,3	20	7	ZLIX-F11		
GMX-7066R-27	0	66	50	48	27	20	12,4	7	22	7			

Концевые фрезы серии GMX Ø 16-32 мм

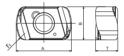
Обозначение		Dc, мм	I2, мм	ls,	L,	Ds, мм	Z	Пластина	Винт	Ключ
GMX-2016-30-S16	0	16	30	70	100	16	2			
GMX-2016-50-S16	0	16	50	100	150	16	2			
GMX-3020-50-S20	0	20	50	80	130	20	3		TSW-2567H	A-08
GMX-3020-80-S20	0	20	80	80	160	20	3	ENMU100412ZER-**		
GMX-4025-60-S25	0	25	60	80	140	25	4	EINIVIU 1004 12ZER-		
GMX-4025-100-S25	0	25	100	80	180	25	4			
GMX-5032-70-S32	0	32	70	80	150	32	5			
GMX-5032-120-S32	0	32	120	80	200	32	5			

ullet складская программа; \circ производственная программа; \Box изготавливается под заказ

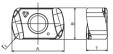

Корпуса поставляются без пластин

Сменные головки MXG 16-42 мм

Обозначение		Dc, мм	Lf,	Db, мм	MD	С,	W, MM	Z	Пластина	Винт	Ключ
MXG-2016-M8	0	16	23	14	M8	8	12	2			
MXG-2017-M8	0	17	23	14	M8	8	12	2			
MXG-3020-M10	0	20	30	18	M10	9	14	3			
MXG-3021-M10	0	21	30	18	M10	9	14	3			
MXG-3025-M12	0	25	35	22	M12	11	19	3		TSW-2567H	A-08
MXG-4025-M12	0	25	35	22	M12	11	19	4	ENMU100412 ZER-PH		
MXG-4026-M12	0	26	35	22,5	M12	11	19	4	ENWO 1004 12 ZER-PH		
MXG-5030-M16	0	30	43	27	M16	12	22	5			
MXG-5032-M16	0	32	43	29	M16	12	22	5			
MXG-5035-M16	0	35	43	29	M16	12	22	5			
MXG-6040-M16	0	40	43	32	M16	14	26	6			
MXG-6042-M16	0	42	43	32	M16	14	26	6			


Пластины режущие

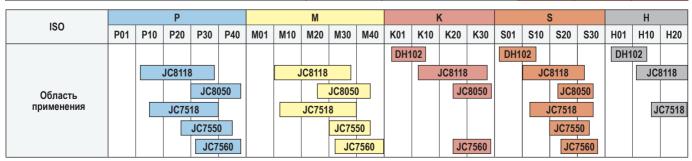
- 2-х сторонние пластины позволяют снизить потребление пластин;
- Увеличеная толщина, позволила повысить в 1,2 раза прочность.



JC8118

JC755

DH102



n	н	1	N2

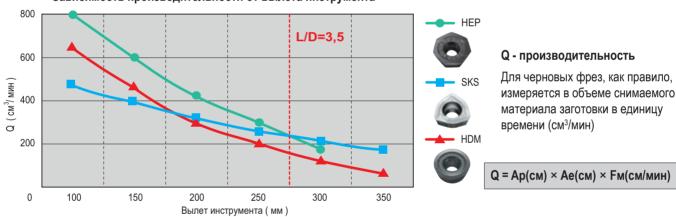
Обозначение	A,	T,	τ, Β, _{rε}		Допуск на	Момент	С покрытием					
Ооозначение	MM	ММ	ММ	31	толщину	затяжки, Нм	DH102	JC8118	JC7518	JC8050	JC7550	JC7560
ENMU100412ZER-PH	10	4	6	1,2	M	0,9	-	0	-	0	-	0
ENMU100412ZER-SL	10	4	6	1,2	M	0,9	-	-	0	-	0	-
ENMU100312ZER-HL	10	3,2	6	1,2	M	-	0	-	-	-	-	-
ENMU100312ZER	10	3,2	6	1,2	M	-	0	-	-	-	-	-

Рекомендации по выбору режимов резания

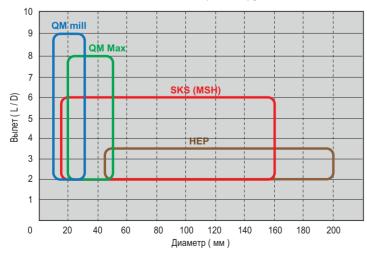
Обрабатываемый материал	Твердость	Сплав	Ар, мм	Vс, м/мин	Fz , мм/зуб
Углеродистые стали	менее 250НВ	JC8050 (JC7560)	0,4-1,0	130-180	1,2
Штамповые стали	менее 255НВ	JC8050 (JC7560)	0,4-1,0	130-180	1,2
Стали для прессформ	30-36HRC	JC8050 (JC7560)	0,4-1,0	130-160	1,2
Стали для прессформ	38-43HRC	JC8118 (JC8050)	03-0,8	75-95	0,8-1,1
Закаленные стали	42-52HRC	JC8118 (JC8050)	0,1-0,6	75-95	0,9-1,1
Закаленные стали	55-62HRC	DH102	0,1-0,2	65-80	0,25-0,3
Серые и высокопрочные чугуны	менее 300НВ	JC8118 (JC8050)	0,4-1,0	150-200	1,2-1,5
Аустенитные нержавеющие стали (AISI 304,316) 08X18H10	менее 250НВ	JC7550 (JC7518)	0,3-0,8	100-120	0,8-1,0
Жаропрочные нержавеющие стали (SUS630) 1-4542, 07X17H4Д4Б-Ш	250-400HB	JC7550 (JC8050)	0,2-0,6	90-100	0,6-0,7
Дуплексные нержавеющие стали (S32750, 02X25H7M3) 1.4410	менее 300НВ	JC7550 (JC8050)	0,3-0,8	90-100	0,2-0,3
Титановые сплавы	35-43HRC	JC7550 (JC7518)	0,3-0,7	50-60	0,6-0,7
Никелевые сплавы	35-43HRC	JC7518 (JC7550)	0,2-0,7	20-30	0,3

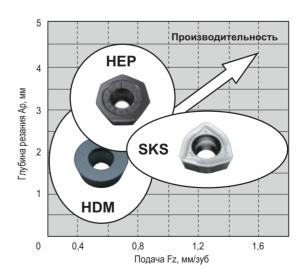
[•] складская программа; ○ производственная программа; □ изготавливается под заказ

О Корпуса поставляются без пластин



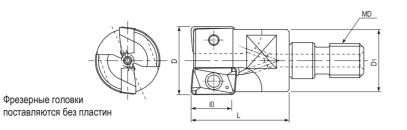
Техническая информация

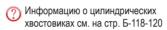

Рекомендации по выбору черновых фрез DIJET


SH	/e			Фрезы се	рии «QM»				EP		
Sr.	\5 		QM Mill			QM Max		п	EP		
	12°			12°			16°	(3) 42°			
Подача Fz (max), мм/зуб	Глубина Ар(max), мм	Размер пластины, мм	Подача Fz (max), мм/зуб	Глубина Ар(max), мм	Размер пластины, мм	Подача Fz (max), мм/зуб	Глубина Ар(max), мм	Подача Fz (max), мм/зуб	Глубина Ар(max), мм		
2,0	3,0	6,5	0,9	0,4	10	1,2	1,0	1,0	5,0		
Ø 25	-160		Ø 10-32			Ø 16-66		Ø 50)-200		
Черновая обработка с Обработка гл	убоких пазов		и 3a ⁻	самая низк трачиваема	минутная по ая мощност ая на резан	гь, ие.		сравнивае Тяжелая черновая обра	водительность среди мых фрез. аботка, основной объем борке карманов.		
и выборок в п Внутренний ко					р для стан			Торцевое фр	резерование.		
ънутренний ко	нтур штампов.	Обраб		с низкой ж	кесткостью. ваемых материалов (Ті и Nі).			Необходимо	е 3 диаметров. сть в мощном борудовании.		

Зависимость производительности от вылета инструмента

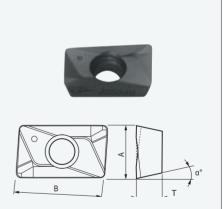
Область применения фрез в зависимости от вылета и диаметра инструмента


• складская программа; о производственная программа; о изготавливается под заказ


Серия Side Chipper

Сменные головки MIC Ø 16-40 мм

Обозначение		D, мм	L,	Ю, мм	D1, мм	MD,	Z	Момент затяжки, Нм	Пластина	Винт	Ключ
MIC-2018-M8	0	18	23	9	15,5	M8	2	16	JDA-ZCGT1003 ZCMT1003R	ESW-206	A-08SD
MIC-2025-M12	0	25	35	15	23	M12	2	20	ZPMT1604R	TSW-408	A-15
MIC-3027-M12	0	27	35	12,5	24	M12	3	20	ZPMT13T3R	DSW-307	A-10
MIC-2032-M16	0	32	43	15	29	M16	2	25			
MIC-3032-M16	0	32	43	15	29	M16	3	25	ZPMT1604R	TSW-408	A-15
MIC-2035-M16	0	35	43	15	29	M16	2	25	ZFWI11004K	1377-400	A-10
MIC-4040-M16	0	40	43	15	29	M16	4	25			


Информацию об оправках для фрезерных головок см. в разделе E.

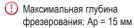
Пластины режущие

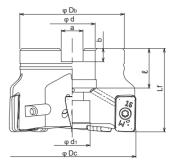
05	۸	В, мм	т	р		С	покрытие	М
Обозначение	А, мм	D, MM	Т, мм	R, мм	α	JC5015	JC5040	JC8050
ZCMT100304R	6,35	10,4	3,4	0,4	7°	0	0	-
ZCMT100308R	6,35	10,4	3,4	0,8	7°	•	•	-
ZPMT13T308R	7,938	13,3	3,97	0,8	11°	0	0	-
ZPMT13T316R	7,938	13,3	3,97	1,6	11°	0	0	-
ZPMT13T320R	7,938	13,3	3,97	2	11°	0	0	-
ZPMT160404R	9,525	16	4,76	0,4	11°	0	0	-
ZPMT160408R	9,525	16	4,76	0,8	11°	0	0	0
ZPMT160416R	9,525	16	4,76	1,6	11°	0	0	-
ZPMT160420R	9,525	16	4,76	2	11°	0	0	-
ZPMT160430R*	9,525	16	4,76	3	11°	0	0	-
ZPMT160432R*	9,525	16	4,76	3,2	11°	0	0	-

Для алюминиевых сплавов

• •						
Обозначение	Α	D	т	D		Без покрытия
Ооозначение	А, мм	В, мм	Т, мм	R, мм	α	FZ-15
ZCMT100308RP	6,35	10,4	3,4	0,8	7°	0
ZPMT13T308RP	7,938	13,3	3,97	0,8	11°	•
ZPMT13T316RP	7,938	13,3	3,97	1,6	11°	0
ZPMT13T320RP	7,938	13,3	3,97	2	11°	0
ZPMT160408RP	9,525	16	4,76	0,8	11°	0
ZPMT160416RP	9,525	16	4,76	1,6	11°	0
ZPMT160420RP	9,525	16	4,76	2	11°	0
ZPMT160430RP*	9,525	16	4,76	3	11°	0
ZPMT160432RP*	9,525	16	4,76	3,2	11°	0

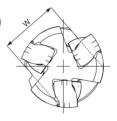
^{*} Корпус фрезы должен быть доработан при использовании пластин с радиусом R более 1,5 мм

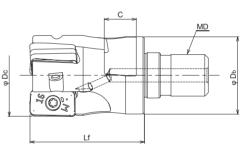



Серия Shoulder Extreme

Торцевые фрезы EXSAP Ø 40-125 мм

- Высокоэффективная черновая и получистовая обработка уступов, плоскостей и пазов;
- ✓ Низкие силы резания, усиленная режущая кромка, двухсторонняя пластина.




Обозначение		Dc, мм	Lf,	Db, мм	d, мм	d1, мм	а, мм	b, мм	I, мм	Z	Пластина	Винт	Ключ
EXSAP-4050R-22	•	50	40	47	22	17	10,4	6,3	20	4			
EXSAP-5050R-22	•	50	40	47	22	17	10,4	6,3	20	5			
EXSAP-5052R-22	0	52	40	47	22	17	10,4	6,3	20	5			
EXSAP-5063R-22	•	63	40	50	22	17	10,4	6,3	19	5	ZNGU1709ZER-PM	TSW-410H	A-15T
EXSAP-7080R-27	•	80	50	56	27	20	12,4	7	24	7			
EXSAP-7100R-32	•	100	50	85	32	26	14,4	8	25	7			
EXSAP-8125R-40	•	125	63	100	40	32	16,4	9	32	8			

Максимальная глубина фрезерования: Ар = 10 мм

Обозначение		Dc, мм	Lf,	Db, мм	d, мм	d1, мм	а, мм	b, мм	I, мм	Z	Пластина	Винт	Ключ
EXSAP-6040R-11-16	•	40	40	35	16	14	8,4	5,6	18	6			
EXSAP-7050R-11-22	•	50	40	47	22	16,5	10,4	6,3	20	7			
EXSAP-7052R-11-22	•	52	40	47	22	16,5	10,4	6,3	20	7	ZNGU1105**ZER-**	TOW 20711	A 10
EXSAP-7063R-11-22	•	63	40	50	22	17	10,4	6,3	20	7	ZNGUTIUS ZER-	TSW-307H	A-10
EXSAP-7063R-11-27	•	63	50	50	27	20	12,4	7	22	7			
EXSAP-8080R-11-27	•	80	50	56	27	20	12,4	7	22	8			

Сменные головки MSX (Ø 16-40мм)

 Фрезерные головки поставляются без пластин

Обозначение		Dc, мм	Lf,	Db, мм	MD,	С,	W, MM	Z	Пластина	Винт	Ключ
MSX-2025-M12	0	25	35	22	M12	11	19	2			
MSX-2026-M12	0	26	35	22	M12	11	19	2			
MSX-2028-M12	0	28	35	22	M12	11	19	2			
MSX-2030-M16	0	30	35	29	M16	12	22	2			
MSX-2032-M16	0	32	43	29	M16	12	22	2	ZNGU1709ZER-PM	TSW-410H	A-15T
MSX-3032-M16	0	32	43	29	M16	12	22	3			
MSX-3033-M16	0	33	43	29	M16	12	22	3			
MSX-3035-M16	0	35	43	29	M16	12	22	3			
MSX-4040-M16	0	40	43	29	M16	12	22	4			

Обозначение		Dc, мм	Lf, MM	Db, мм	MD,	С,	W, MM	Z	Пластина	Винт	Ключ
MSX-2016-11-M8	0	16	23	15	M8	8	12	2			
MSX-3020-11-M10	0	20	30	18	M10	9	14	3			
MSX-3025-11-M12	0	25	35	22	M12	11	19	3	ZNGU1105**ZER-**	TSW-307H	A-10
MSX-4030-11-M16	0	30	43	29	M16	12	22	4	ZNGUTIUS ZER-	1911-30/1	A-10
MSX-4032-11-M16	0	32	43	29	M16	12	22	4			
MSX-5040-11-M16	0	40	43	29	M16	12	22	5			

• складская программа; ○ производственная программа; □ изготавливается под заказ

О Корпуса поставляются без пластин

Концевые фрезы EXSAP Ø 16-40 мм

Обозначение		Dc, мм	I2, мм	ls,	L, MM	D1, мм	Ds, мм	Z	Пластина	Винт	Ключ
EXSAP-2016-11-50-S16+A	•	16	50	60	110	14,6	16	2			
EXSAP-3020-11-50-S20+A	•	20	50	80	130	18,3	20	3	ZNGU1105**ZER-**	SW-307H	A-10
EXSAP-3025-11-50-S25+A	•	25	50	80	130	23,4	25	3	ZNGUTIUS ZER-	3W-3U/П	A-10
EXSAP-4032-11-50-S32+A	•	32	50	80	130	29	32	4			

Обозначение		Dc, мм	I2, мм	ls, MM	L,	Ds, мм	Z	Пластина	Винт	Ключ
EXSAP-2025-30-S25+A	•	25	30	70	100	16	2			
EXSAP-3032-35-S32+A	•	32	35	85	120	20	3	ZNGU1709**ZER-PM	TSW-410H	A-15
EXSAP-4040-35-S32+A	•	40	35	85	120	25	4			

Пластины режущие

Обозначение	A	р	т	В	С покр	ытием	
Ооозначение	А, мм	В, мм	Т, мм	R, мм	JC8050	JC8118	
ZNGU170904ZER-PM	16,9	10	8,8	0,4	0	0	
ZNGU170908ZER-PM	16,9	10	8,8	0,8	0	0	JC8118 JC8050
ZNGU170916ZER-PM	16,9	10	8,8	1,6	0	0	
ZNGU170920ZER-PM	16,9	10	8,8	2,0	0	0	Â
ZNGU170930ZER-PM	16,9	10	8,6	3,0	0	0	

Обозначение	Α,	В,	T,	rε,		С покр	ытием	
Ооозначение	MM	MM	MM	мм	JC8118	JC8050	JC7518	JC7550
ZNGU110504ZER-PM	11	6,3	5,6	0,4	0	0		
ZNGU110508ZER-PM	11	6,3	5,6	0,8	•	•		
ZNGU110516ZER-PM	11	6,3	5,6	1,6	0	0		
ZNGU110504ZER-SL	11	6,3	5,6	0,4			0	0
ZNGU110508ZER-SL	11	6,3	5,6	0,8			•	•
ZNGU110516ZER-SL	11	6,3	5,6	1,6			0	0

Область применения

Для сплавов

JC7518 - сплав с PVD покрытием по сталям, нержавеющим и жаропрочным сплавам. От чернового до получистового фрезерования.

JC7550 - сплав с PVD покрытием по сталям, нержавеющим и жаропрочным сплавам. Черновое фрезерование.

JC8050 - сплав с PVD покрытием имеет высокую прочность и износостойкость по сталям и нержавеющим сталям;

JC8118 - сплав с PVD покрытием обладает высокой многофункциональностью и применяется для обычных и штамповых сталей, а также для сталей с твердостью до 50 HRc.

Базовые режимы резания

Для сменных головок MIC с оправками серии MSN

Обрабатываемый материал	Твердость	Сплав	Ар, мм	V, м/мин	Fz , мм/зуб
Углеродистые стали (сталь 50)	150-280HB	JC5040	0,3-1,5	150-180	0,25-0,3
Штамповые стали (40ХГМА)	30-43 HRC	JC5040 JC5015 (свыше 40HRC)	0,3-1,5	150-160	0,2-0,25
Штамповые стали (4Х5МФ1С)	Менее 255НВ	JBN330	0,3-1,5	150-160	0,2-0,25
Нержавеющие стали (08X18H10)	150-250HB	JC5015 (JC5040)	0,3-1,5	150-160	0,2-0,25
Закаленная штамповые стали (4Х5МФ1С)	40-50 HRC	JC5015	0,3-0,8	60-70	0,1-0,12
Серые (Сч25,Сч30) и высокопрочные чугуны (Вч60-2,Вч79-2)	Менее 300НВ	JC5015	0,3-1,5	125-150	0,25-0,3
Алюминиевые сплавы	50-110HB	FZ15	1-3	340-400	0,2-0,25

При вылетах иструмента более 7 диаметров глубину резания назначают по нижней границе диапазона.

Для сменных головок MIC с оправками серии MSN (пластина ZCMT13...., ZCMT16....)

Обрабатываемый материал	Твердость	Сплав	Ар, мм	V, м/мин	Fz , мм/зуб
Углеродистые стали (сталь 50)	150-280HB	JC5040	0,3-1,5	150-180	0,25-0,3
Штамповые стали (40ХГМА)	30-43 HRC	JC5040 JC5015 (свыше 40HRC)	0,3-1,5	150-160	0,2-0,25
Штамповые стали (4Х5МФ1С)	Менее 255НВ	JBN330	0,3-1,5	150-160	0,2-0,25
Нержавеющие стали (08X18H10)	150-250HB	JC5015 (JC5040)	0,3-1,5	150-160	0,2-0,25
Закаленная штамповые стали (4Х5МФ1С)	40-50 HRC	JBN330	0,3-0,8	60-70	0,1-0,12
Серые (Сч25,Сч30) и высокопрочные чугуны (Вч60-2, Вч79-2)	Менее 300НВ	JBN330	0,3-1,5	125-150	0,25-0,3
Алюминиевые сплавы	50-110HB	FZ15	1-3	340-400	0,2-0,25

При вылетах иструмента более 7 диаметров глубину резания назначают по нижней границе диапазона.

Для фрез серии Shoulder Extreme

			Обр-к	а плоскости,	Ae≤1D	Обр-ка уступа, Ар≤15мм			
Обрабатываемый материал	Твердость	Сплав	V, м/мин	Fz, мм/зуб	Ар мах, мм	V, м/мин	Fz, мм/зуб	Ае мах, мм	
Углеродистые стали	≤250HB	JC8050	150	0,3	4	200	0,3	2	
Литейные стали	≤285HB	JC8050	150	0,3	4	190	0,3	2	
Штамповые стали	≤255HB	JC8050	150	0,25	4	200	0,3	2	
Стали для прессформ	30-36HRC	JC8118	130	0,25	4	150	0,3	2	
Стали для прессформ	38-43HRC	JC8118	110	0,25	3	120	0,25	1,5	
Закаленные штамповые стали	42-52HRC	JC8118	90	0,2	2,5	100	0,2	1	
Чугуны (СЧ, ВЧ)	≤300HB	JC8118	130-180	0,25	4	150-250	0,25	2	
Нержавеющие аустенитные стали	≤250HB	JC8050	110	0,2	4	120	0,2	2	
Нержавеющие мартенстные стали	≤250HB	JC8118	150	0,25	4	190	0,25	2	
Нержавеющие стали	≤250HB	JC7550 (JC7518)	140	0,14	4	140	0,14	2	
Титановые сплавы	35-43HRC	JC7550 (JC7518)	70	0,13	4	70	0,13	2	
Жаропрочные стали	35-43HRC	JC7550 (JC7518)	30	0,1	2,5	30	0,1	2	

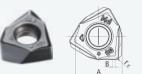
Окончательные режимы резания определяются в конкретных условиях, в зависимости от жесткости технологической системы. Более подробную информацию по режимам резания смотрите на сайте www.s-t-group.com в каталоге DIJET.

При использовании сменных головок с ZCMT10... глубина резания назначается по нижней границе диапазона.

Серия Shoulder SIX

Торцевые фрезы EXSIX Ø 50-160 мм

- Высокоэффективная черновая и получистовая обработка уступов, плоскостей и пазов;
- Низкие силы резания, усиленная режущая кромка, двухсторонняя пластина с 6-ю режущими кромками


Рис. 1

Максимальная глубина фрезерования: Ар = 10 мм

Обозначение		Dc, мм	Lf,	Db, мм	d, мм	d1, мм	а, мм	b, мм	I, мм	Z	Рис.	Пластина	Винт	Ключ
EXSIX-4050R-22	•	50	40	47	22	14	10,4	6,3	20	4	1			
EXSIX-4052R-22	•	52	40	47	22	14	10,4	6,3	20	4	1			
EXSIX-5063R-22	•	63	40	50	22	17	10,4	6,3	20	5	1			
EXSIX-5066R-22	•	66	40	50	22	17	10,4	6,3	20	5	1	YCMU0907**ZER-PM	CSW-513H	A-20
EXSIX-6080R-27	•	80	50	56	27	20	12,4	7	22	6	1	1 CIVIOU901 ZER-PIVI	C3W-313H	A-20
EXSIX-7100R-32	•	100	50	85	32	26	14,4	8	25	7	1			
EXSIX-8125R-40	•	125	63	100	40	32	16,4	9	32	8	1			
EXSIX-9160R-40	•	160	63	100	40	60	16,4	9	35	9	2			

Пластины режущие

05	Α,	В,	T,	rε,	С покрытием		
Обозначение	MM	MM	ММ	ММ	JC8050	JC8118	
YCMU090708ZER-PM	14	1,41	7,5	0,8	0	0	
YCMU090716ZER-PM	14	0,62	7,5	1,6	0	0	

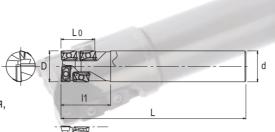
Область применения

Для сплавов

JC8050 - сплав с PVD покрытием имеет высокую прочность и износостойкость по сталям и нержавеющим сталям; JC8118 - сплав с PVD покрытием обладает высокой многофункциональностью и применяется для обычных и штамповых сталей, а также для сталей с твердостью до 50 HRc.

Рекомендации по выбору режимов резания

Для фрез серии Shoulder SIX


			Обр-к	а плоскости,	Ae≤1D	Обр-ка уступа			
Обрабатываемый материал	Твердость	Сплав	V, м/мин	Fz, мм/зуб	Ар мах, мм	V, м/мин	Fz, мм/зуб	Ае мах, мм	
Углеродистые стали	≤250HB	JC8050	150	0,3	4	200	0,3	-	
Литейные стали	≤285HB	JC8050	150	0,3	4	180	0,3	9	
Штамповые стали	≤255HB	JC8050	150	0,25	4	200	0,3	9	
Стали для прессформ	30-36HRC	JC8118	130	0,25	4	150	0,3	9	
Стали для прессформ	38-43HRC	JC8118	120	0,25	3	120	0,25	9	
Закаленные штамповые стали	42-52HRC	JC8118	90	0,2	2,5	100	0,2	9	
Чугуны (СЧ, ВЧ)	≤300HB	JC8118	180	0,3	6	250	0,3	9	
Нержавеющие аустенитные стали	≤250HB	JC8050	110	0,2	4	120	0,2	9	
Нержавеющие мартенстные стали	≤250HB	JC8118	150	0,25	4	180	0,25	9	

Серия Super End-Chipper. (Ø 16-33мм) Многоцелевые фрезы SEC со сменными пластинами

- Конструкция с центральной режущей пластиной позволяет производить фрезерования с врезанием, обработку сложных фасонных поверхностей, фрезерование с осевой подачей.
- Обработка открытых и замкнутых пазов, плоскостей и карманов.
- Низкие усилия резания при большой глубине резания, высокие подачи - высокая производительность.
- Оптимальная комбинация геометрии пластины и марки твердого сплава обеспечивают высокие эксплуатационные показатели на разных операциях.

Концевые фрезы SEC

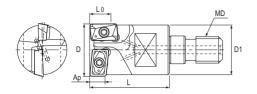
Обозначение		D, мм	L,	L0,	d, MM	I1, мм	Центральная пластина	Z	Периферийная пластина	Z	Винт	Ключ
SECML1616S15	0	16	150	16	15	30	ZDMT08T208L	1	ZPMT09T208R	3	TSW-2250	A-07SD
SECML2121S20	0	21	150	21	20	35	ZDMT100308L	1	ZCMT100308R	3	ESW-206	A-08SD
SECM2427S25	0	24	140	27	25	60	ZDMT13T3L	1	ZPMT13T3R	3	DSW-307	A-10
SECL2527S25	0	25	220	27	25	75	ZDIVITIOTOL	'	ZPWITISTSR	3	D244-201	A-10
SECM2627S25	0	26	140	27	25	40	ZDMT13T3L	1	ZPMT13T3R	3	DSW-307	A-10
SECML2627S25	0	26	180	27	25	40	ZDIVITI313L		ZPMI 1313R	3	DSVV-307	A-10
SECM3034S32	0	30	150	34,5	32	70	ZPMT150408L	1	ZPMT160408R	3	TSW-408	A-15
SECL3034S32	0	30	180	34,5	32	100	ZPIVIT 150400L		ZPIVITIOU4UOR	3	1500-400	A-15
SECM3234S32	0	32	150	34,5	32	70						
SECML3234S32	0	32	190	34,5	32	80	ZPMT1604L	1	ZPMT1604R	3	TSW-408	A-15
SECL3234S32	0	32	230	34,5	32	90						
SECM3334S32	0	33	160	34,5	32	50						
SECML3334S32	0	33	190	34,5	32	50	ZPMT1604L	1	ZPMT1604R	3	TSW-408	A-15
SECL3334S32	0	33	230	34,5	32	50						

Операции, выполняемые фрезами SUPER END CHIPPER

интерполяцией

. поверхностей

Сверление


с осевой подачей

[•] складская программа; ○ производственная программа; □ изготавливается под заказ

Сменные головки МЕС (Ø 16-33мм)

Обозначение		D, мм	L,	L0,	D1, мм	MD	Момент затяжки, Нм	Пластина	Винт	Ключ
MEC-2024-M12	0	24	35	12,5	22,5	M12	20	ZDMT13T3L (1) ZPMT13T3R (1)	DSW-307	A-10
MEC-2026-M12	0	26	35	12,5	24,1	M12	20	ZDMT13T3L (1) ZPMT13T3R (1)	DSW-307	A-10
MEC-2030-M16	0	30	43	15	28,2	M16	25	ZPMT150408L(1) ZPMT160408R (1)	TSW-408	A-15
MEC-2032-M16	0	32	43	15	30,2	M16	25	ZPMT1604L (1) ZPMT1604R (1)	TSW-408	A-15
MEC-2033-M16	0	33	43	15	31	M16	25	ZPMT1604L (1) ZPMT1604R (1)	TSW-408	A-15

Пластины режущие

Обозначение	Рис.	A,	В,	Т,	R,	α	С покр	оытием	Без покрытия	Рис.1 Центральная пластина
							JC5015	JC5040	FZ15	
ZDMT08T208L	1	6	7,9	2,78	0,8	15°	•	•		- P
ZDMT08T208LP	3	6	7,9	2,78	0,8	15°			•	ACDITION OF
ZPMT09T208R	2	5,4	9	2,78	0,8	11°	•	•		∑ R
ZPMT09T208RP	4	5,4	9	2,78	0,8	11°			•	
ZDMT100308L	1	6,35	10,4	3,4	0,8	15°	•	•		
ZCMT100308R	2	6,35	10,4	3,4	0,8	7°	0	0		α T B
ZDMT100308LP	3	6,35	10,4	3,4	0,8	15°			•	
ZCMT100308RP	4	6,35	10,4	3,4	0,8	7°			0	Рис.2 Периферийная пластина
ZDMT13T308L	1	7,938	12,9	3,97	0,8	15°	•	•		
ZDMT13T320L	1	7,938	12,9	3,97	2,0	15°	0	0		
ZPMT13T308R	2	7,938	13,3	3,97	0,8	11°	•	•		an annual
ZPMT13T320R	2	7,938	13,3	3,97	2,0	11°	0	0		\mathcal{L}^{R}
ZDMT13T308LP	3	7,938	12,9	3,97	0,8	15°			0	
ZDMT13T320LP	3	7,938	12,9	3,97	2,0	15°			0	
ZPMT13T308RP	4	7,938	13,3	3,97	0,8	11°			0	
ZPMT13T320RP	4	7,938	13,3	3,97	2,0	11°			0	(←→)
ZPMT150408L	1	9,525	15,45	4,76	0,8	11°	•	0		Сменные полированные пластины
ZPMT150408LP	3	9,525	15,45	4,76	0,8	11°			0	для обработки Al
ZPMT160408L	1	9,525	16,45	4,76	0,8	11°	•	•		Рис.3 Центральная пластина
ZPMT160416L	1	9,525	16,45	4,76	1,6	11°	0	0		The designation of the second
ZPMT160420L	1	9,525	16,45	4,76	2,0	11°	0	0		
*ZPMT160430L	1	9,525	16,45	4,76	3,0	11°	0	0		THE RESERVE OF THE PARTY OF THE
*ZPMT160432L	1	9,525	16,45	4,76	3,2	11°	0	0		
ZPMT160408R	2	9,525	16	4,76	0,8	11°	•	•		
ZPMT160416R	2	9,525	16	4,76	1,6	11°	0	0		
ZPMT160420R	2	9,525	16	4,76	2,0	11°	0	0		
*ZPMT160430R	2	9,525	16	4,76	3,0	11°	0	0		T B
*ZPMT160432R	2	9,525	16	4,76	3,2	11°	0	0		
ZPMT160408LP	3	9,525	16,45	4,76	0,8	11°			0	Рис.4 Периферийная пластина
ZPMT160416LP	3	9,525	16,45	4,76	1,6	11°			0	
ZPMT160420LP	3	9,525	16,45	4,76	2,0	11°			0	
ZPMT160430LP	3	9,525	16,45	4,76	3,0	11°			0	
ZPMT160432LP	3	9,525	16,45	4,76	3,2	11°			0	/R
ZPMT160408RP	4	9,525	16	4,76	0,8	11°			•	
ZPMT160416RP	4	9,525	16	4,76	1,6	11°			0	/ ^ / \ (()) \(\)
ZPMT160420RP	4	9,525	16	4,76	2,0	11°			0	a The state of the
*ZPMT160430RP	4	9,525	16	4,76	3,0	11°			0	T B
*ZPMT160432RP	4	9,525	16	4,76	3,2	11°			0	

Информацию о сплавах см. стр. Б-121-123

складская программа; ○ производственная программа; □ изготавливается под заказ

Базовые режимы резания Для концевых фрез серии SEC

				Диаметр инструмента, мм											
						Ø 1	6				Ø 20	21			
Обрабатываемый	T	0	Режимы	Фрезер па:	ование зов	Фрезер усту	ование Упов	Засверливание	Фрезер па:	ование зов	Фрезер усту	ование /пов	Засверливание		
материал	Твердость	Сплав	резания		d d	dA	l Ae	App		d Ap	Ap	Ae	Ap Ap		
			п (об/мин)	2 790	2 590	2 980	2 980	2 790	2 390	2 230	2 550	2 550	2 390		
Углеродистые	150-280HB	JC5040	F (мм/мин)	560	310	630	450	420	600	380	680	510	480		
стали (сталь 50)	150-260HB	JC5040	Ар (мм)	до 3	3 - 8	до 5	5 - 16	до 2	до 4	4 - 10	до 5	5 - 21	до 3		
			Ае (мм)	-	-	до 8	до 3	-	-	-	до 10	до 4	-		
			n (об/мин)	2 790	2 590	2 890	2 980	2 790	2 390	2 230	2 550	2 550	2 390		
Легированные	450 000UD	105040	F (мм/мин)	500	280	570	410	380	540	350	630	460	430		
стали	150-280HB	JC5040	Ар (мм)	до 3	3 - 8	до 5	5 - 16	до 2	до 4	4 - 10	до 5	5 - 21	до 3		
			Ае (мм)	-	-	до 8	до 3	-	-	-	до 10	до 4	-		
			n (об/мин)	2 190	1 990	2 390	2 390	2 190	1 910	1 750	2 070	2 070	1 910		
Штамповые	200 400110	00HB JC5040 JC5015	F (мм/мин)	390	250	480	330	260	430	275	520	370	340		
стали (4Х5МФ1С)	280-400HB		Ар (мм)	до 2,5	3 - 8	до 5	5 - 16	до 2	до 3	3 - 10	до 5	5 - 21	до 3		
			Ае (мм)	-	-	до 8	до 3	-	-	-	до 10	до 4	-		
			n (об/мин)	2 190	1 990	2 390	2 390	2 190	1 910	1 750	2 070	2 070	1 910		
Инструментальные	450 055110	105040	F (мм/мин)	390	250	480	330	260	430	275	520	370	370		
стали	150-255HB	JC5040	Ар (мм)	до 2,5	3 - 8	до 5	5 - 16	до 2	до 3	3 - 10	до 5	5 - 21	до 3		
			Ае (мм)	-	-	до 8	до 3	-	-	-	до 10	до 4	-		
			n (об/мин)	1 990	1 790	2 190	2 190	1 990	1 750	1 590	1 910	1 910	1 750		
Нержавеющие	150-250HB	JC5015	F (мм/мин)	350	220	430	280	240	385	240	430	305	260		
стали (08X18H10)	100-20000	JC5040	Ар (мм)	до 2,5	3 - 8	до 5	5 - 16	до 2	до 3	3 - 10	до 5	5 - 21	до 3		
			Ае (мм)	-	-	до 8	до 3	-	-	-	до 10	до 4	-		
			n (об/мин)	2 900	2 790	3 180	3 180	2 980	2 500	2 390	2 700	2 700	2 500		
Серые чугуны	160-260HB	JC5015	F (мм/мин)	720	500	760	570	520	750	530	810	610	630		
(Cu25,Cu30)	100-20008	JC5040	Ар (мм)	до 3	3 - 8	до 5	5 - 16	до 2	до 4	4 - 10	до 5	5 - 21	до 3		
			Ае (мм)	-	-	до 8	до 3	-	-	-	до 10	до 4	-		
			n (об/мин)	2 790	2 590	2 980	2 980	2 790	2 390	2 230	2 550	2 550	2 390		
Высокопрочные	170 200LID	JC5015	F (мм/мин)	560	310	630	450	420	600	400	700	500	480		
чугуны (вчоо-2, Вч79-2)	ы (Вч60-2, 170-300НВ 1 ₁₀₅	JC5040	Ар (мм)	до 3	3 - 8	до 5	5 - 16	до 2	до 4	4 - 10	до 5	5 - 21	до 3		
			Ае (мм)	-	-	до 8	до 3	-	-	-	до 10	до 4	-		
			n (об/мин)	6 000	6 000	6 000	6 000	6 000	4 780	4 780	4 780	4 780	4 780		
A THOMAN MAY	50-110HB	FZ15	F (мм/мин)	1 440	1 100	1 800	1 100	1 100	1 440	1 100	1 900	1 100	1 100		
Алюминий	20-110HB	FZIO	Ар (мм)	до 3	3 - 8	до 5	5 - 16	до 2	до 4	4 - 10	до 5	5 - 21	до 3		
			Ае (мм)	-	-	до 8	до 3	-	-	-	до 10	до 4	-		

Пример использования фрез SEC

Обработка литьевой формы

• складская программа; ○ производственная программа; □ изготавливается под заказ

Базовые режимы резания Для концевых фрез серии SEC

							Диаметр инс	трумента	а, мм				
						Ø 24 / 2	5 / 26				Ø 30 / 3	2 / 33	
Обрабатываемый	_		Режимы		ование 30в	Фрезер усту	ование /пов	Засверливание	Фрезер	ование 30в	Фрезер усту	ование /пов	Засверливание
материал	Твердость	Сплав	резания	- Tolyand	Ap	AP	Ae	Ap	70	Ap	Ap	Ae	Ap
			n (об/мин)	1 910	1 780	2 040	2 040	1 910	1 490	1 390	1 590	1 590	1 490
Углеродистые	450 000UD	105040	F (мм/мин)	520	350	610	400	470	450	310	550	400	370
стали (сталь 50)	150-280HB	JC5040	Ар (мм)	до 5	5 - 12	до 7	7 - 27	до 4	до 4	6 - 16	до 8	8 - 34	до 5
			Ае (мм)	-	-	до 12	до 5	-	-	-	до 16	до 6	-
			n (об/мин)	1 910	1 780	2 040	2 040	1 910	1 490	1 390	1 590	1 590	1 490
Легированные	450 000UD	105040	F (мм/мин)	480	320	550	360	380	420	280	480	350	300
стали	150-280HB	JC5040	Ар (мм)	до 5	5 - 12	до 7	7 - 27	до 4	до 4	6 - 16	до 8	8 - 34	до 5
			Ае (мм)	-	-	до 12	до 5	-	-	-	до 16	до 6	-
			n (об/мин)	1 530	1 400	1 650	1 650	1 530	1 290	1 190	1 290	1 290	1 290
Штамповые	280-400HB	JC5040	F (мм/мин)	380	250	440	290	300	320	240	390	260	250
стали (4Х5МФ1С)	280-400HB	JC5015	Ар (мм)	до 4	4 - 12	до 7	7 - 27	до 4	до 5	5 - 16	до 8	8 - 34	до 5
			Ае (мм)	-	-	до 12	до 5	-	-	-	до 16	до 6	-
			n (об/мин)	1 530	1 400	1 650	1 650	1 530	1 190	1 100	1 290	1 290	1 190
Инструментальные	150-255HB	ID 105040	F (мм/мин)	380	250	440	290	300	300	220	390	240	240
стали	100-20000	JC5040	Ар (мм)	до 4	4 - 12	до 7	7 - 27	до 4	до 5	5 - 16	до 8	8 - 34	до 5
			Ае (мм)	-	-	до 12	до 5	-	-	-	до 16	до 6	-
			n (об/мин)	1 400	1 270	1 530	1 530	1 400	1 100	1 000	1 190	1 190	1 100
Нержавеющие	150-250HB	JC5015	F (мм/мин)	320	200	380	270	210	275	200	360	240	165
стали (08Х18Н10)	100-20008	JC5040	Ар (мм)	до 4	4 - 12	до 7	7 - 27	до 4	до 5	5 - 16	до 8	8 - 34	до 5
			Ае (мм)	-	-	до 12	до 5	-	-	-	до 16	до 6	-
			n (об/мин)	2 040	1 910	2 160	2 160	2 040	1 690	1 590	1 790	1 790	1 690
Серые чугуны	400 000 ID	JC5015	F (мм/мин)	700	470	750	540	600	680	480	700	540	500
(Cu25,Cu30)	160-260HB	JC5040	Ар (мм)	до 5	5 - 12	до 7	7 - 27	до 4	до 8	8 - 16	до 8	8 - 34	до 5
			Ае (мм)	-	-	до 12	до 5	-	-	-	до 16	до 6	-
			n (об/мин)	1 910	1 780	2 040	2 040	1 910	1 490	1 390	1 590	1 590	1 490
Высокопрочные	170 200LID	JC5015	F (мм/мин)	570	390	650	460	480	520	350	560	400	370
чугуны (Вч60-2, Вч79-2)	170-300HB JC5015 JC5040	Ар (мм)	до 5	5 - 12	до 7	7 - 27	до 4	до 8	8 - 16	до 8	8 - 34	до 5	
			Ае (мм)	-	-	до 12	до 5	-	-	-	до 16	до 6	-
		50 440UD	n (об/мин)	3 820	3 820	3 820	3 820	3 820	3 000	3 000	3 000	3 000	3 000
V Ellovana na g	EO 1101 ID		F (мм/мин)	1 340	960	1 900	960	1 150	1 200	900	1 500	900	900
Алюминий	50-110HB	FZ15	Ар (мм)	до 5	5 - 12	до 7	7 - 27	до 4	до 8	8 - 16	до 8	8 - 34	до 5
			Ае (мм)	-	-	до 12	до 5	-	-	-	до 16	до 6	-

ullet складская программа; \circ производственная программа; \Box изготавливается под заказ

Базовые режимы резания

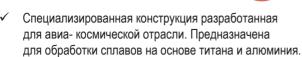
Номинальные режимы резания для сменных головок серии MEC с твердосплавными оправками серии MSN

										Д	иаме	тр ин	струм	ента, м	М							
Обрабатываемый	Твер-	Сплав			16			2	1 / 22			24 /	25 / 26			32 /	32 / 33			32 /	32 / 33	
материал	дость	Ciniab	L, mm	Ар, мм	n, об/мин	F, мм/мин																
.,			70	0,6	3 580	2 140	70	0,7	2 860	1 430	90	1,0	2 290	1 150	100	1,5	1 790	900	100	1,5	1 640	820
Углеродистые стали (сталь 50)	менее 250HB	JC5040	120	0,5	3 180	1 590	120	0,5	2 860	1 430	140	0,6	2 290	1 150	150	1,0	1 790	900	150	1,0	1 640	820
0.03.11 (0.03.12 00)	2001.12		160	0,3	2 980	1 490	190	0,3	2 400	1 200	210	0,3	1 900	950	210	0,6	1 490	745	210	0,6	1 360	680
		JC5040	70	0,6	3 180	1 590	70	0,7	2 550	1 150	90	1,0	2 040	920	100	1,5	1 600	720	100	1,5	1 460	660
Штамповые стали (40ХГМА)	30-43HRC	JC5015 более	120	0,5	3 180	1 590	120	0,5	2 550	1 150	140	0,6	2 040	920	150	1,0	1 600	720	150	1,0	1 460	660
, , , , , , , , , , , , , , , , , , , ,		40HRC)	160	0,3	2 980	1 490	190	0,3	2 400	1 200	210	0,3	1 900	860	210	0,6	1 490	670	210	0,6	1 360	610
Штамповые			70	0,6	3 180	1 590	70	0,7	2 550	1 150	90	1,0	2 040	920	100	1,5	1 600	720	100	1,5	1 460	660
стали (4X5MФ1C,	менее 255HB	JC5040	120	0,5	3 180	1 590	120	0,5	2 550	1 150	140	0,6	2 040	920	150	1,0	1 600	720	150	1,0	1 460	660
1.2379)			160	0,3	2 980	1 490	190	0,3	2 400	1 200	210	0,3	1 900	860	210	0,6	1 490	670	210	0,6	1 360	610
Нержавеющие	менее		70	0,6	3 180	1 590	90	0,7	2 550	1 150	90	1,0	2 040	920	100	1,5	1 600	720	100	1,5	1 460	660
стали (08Х18Н10,	250HB	JC5015	120	0,5	2 980	1 490	120	0,5	2 400	1 080	140	0,6	1 900	860	150	1,0	1 490	670	150	1,0	1 360	610
1.4401)			160	0,3	2 980	1 490	190	0,3	2 400	1 080	210	0,3	1 900	860	210	0,6	1 490	670	210	0,6	1 360	610
Закаленная			70	0,4	1 400	350	70	0,5	1 110	280	90	0,7	890	270	100	0,8	700	210	100	0,8	640	190
штамповые стали	40-50HRC	JC5015	120	0,3	1 200	300	120	0,3	950	240	140	0,4	765	230	150	0,5	600	180	150	0,5	550	170
(4X5MΦ1C)			160	-	-	-	190	-	-	-	210	-	-	-	210	0,3	600	180	210	0,3	550	170
Серые (Сч25,Сч30) и	менее		70	0,6	2 980	1 800	70	0,7	2 400	1 440	90	1,0	1 900	1 140	100	1,5	1 500	900	100	1,5	1 360	820
высокопрочные чугуны (Вч60-2, Вч79-2)	300HB	JC5015	120	0,5	2 980	1 650	120	0,5	2 400	1 440	140	0,6	1 900	1 140	150	1,0	1 500	900	150	1,0	1 360	820
(15-100-2, 15-17-2)			160	0,3	2 500	1 380	190	0,3	2 070	1 240	210	0,3	1 600	960	210	0,6	1 250	750	210	0,6	1 140	680
Алюминиевые			70	2,0	8 000	4 000	70	2	6 400	3 200	90	2,5	5 100	2 550	100	3,0	4 000	2 000	-	-	-	-
сплавы	50-110 HB	FZ05	120	1,5	8 000	3 600	120	1,5	6 400	3 200	140	1,5	5 100	2 550	150	2,0	4 000	2 000	-	-	-	-
			160	1,0	6 700	3 000	190	1	5 600	2 520	210	1,0	4 300	2 150	210	1,5	3 350	1 500	-	-	-	-

Пример использования фрез SEC

Высокоэффективная обработка алюминия

Обработка по контуру		Наименование	Плита
field also	Обрабатываемое изделие	Материал	Алюминиевый сплав
11000000	подолию	Твердость	-
LA BAB A	14	Корпус фрезы	SECML3234S32
DE9090 / 123	Инструмент	Пластины	JC5040
E 1223		Скорость резания	249 м/мин (2500 мин ⁻¹)
		Минутная подача	762 мм/мин
Результат	Условия	Глубина резания, Ар	38,1 мм
	обработки	Ширина фрезерования, Ае	12,7 мм
Производительность фрезы SEC оказалась в 2,4 раз выше производительности фрезы, применяемой ранее.		Наличие СОТС	Масляный туман
		Станок	Вертикальный ОЦ



ullet складская программа; \circ производственная программа; \Box изготавливается под заказ

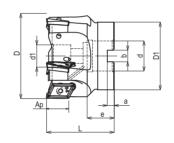
Серия Aero-Chipper

Концевые фрезы серии ALXM Ø 20-40 мм

Полированная пластина с острокромочной геометрией для алюминия.

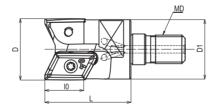
Пластина из высокопрочного сплава с покрытием для титана.

Максимальная глубина фрезерования: Ар = 3-8 мм; Максимальная ширина фрезерования: Ae ≤ 2/3D; Длинна рабочей части: Lo = 15 мм



Обозначение		D, мм	L, MM	d, мм	b, мм	Z	Пластина	Винт	Ключ
ALXM-1020S20	0	20	110	20	35	1			
ALXM-2025S25	0	25	125	25	50	2			
ALXM-2028S25	0	28	125	25	50	2	XOGT-1605	DSW-4085	A-15T
ALXM-2032S32	0	32	150	32	50	2	XOG1-1005	D3VV-4003	A-131
ALXM-2035S32	0	35	150	32	50	2			
ALXM-3040S32	0	40	170	32	80	3			

Торцовые фрезы ALX Ø 50, 63 мм

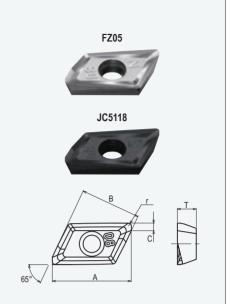


Обозначение		D, мм	D1, мм	L, MM	d, мм	d1, мм	а, мм	b, мм	е, мм	Z	Пластина	Винт	Ключ
ALX-4050R-22	0	50	45	50	22	16,5	6,3	10,4	20	4	XOGT-1605	DSW-4085	A-15T
ALX-5063R-22	0	63	50	50	22	16,5	6,3	10,4	20	5	AOG1-1005	D377-4065	A-131

Сменные головки MAL Ø 20-40 мм

Обозначение		D, мм	L,	I0, мм	D1, мм	MD	Z	Пластина	Винт	Ключ
MAL-1020-M10	0	20	35	15	19,7	M10	1		DSW-4075	
MAL-2025-M12	0	25	35	15	24,1	M12	2			
MAL-2028-M12	0	28	35	15	26,9	M12	2	VOOT 1605		۸ 15
MAL-2032-M16	0	32	43	15	30,5	M16	2	XOGT-1605	DSW-4085	A-15
MAL-2035-M16	0	35	43	15	32	M16	2			
MAL-3040-M16	0	40	43	15	32	M16	3			

Информацию о цилиндрических хвостовиках см. на стр. Б-118-120 Информацию об оправках для фрезерных головок см. в разделе Е.


Корпуса поставляются без пластин

Пластины режущие

Обозначение	Α,	В,	C,	T,	r,	Без покрытия	С покрытием
Обозначение	ММ	ММ	ММ	ММ	ММ	FZ05	JC5118
XOGT-160502-PDFR	20,8	16	2,5	5	0,2	0	
XOGT-160504-PDFR	21	16	2,4	5	0,4	0	
XOGT-160508-PDFR	20,9	16	2,4	5	0,8	0	
XOGT-160512-PDFR	20,8	16	2,5	5	1,2	0	
XOGT-160516-PDFR	20,7	16	2,6	5	1,6	0	
XOGT-160520-PDFR	20,4	16	2,8	5	2	0	
XOGT-160525-PDFR	20,6	16	3,0	5	2	0	
XOGT-160530-PDFR	19,8	16	3,3	5	3	0	
XOGT-160532-PDFR	19,6	16	3,5	5	3,2	0	
XOGT-160540-PDFR *	19,6	16	3,5	5	4,0	0	
XOGT-160502-PDER	20,8	16	2,5	5	0,2		0
XOGT-160504-PDER	21	16	2,4	5	0,4		0
XOGT-160508-PDER	20,9	16	2,4	5	0,8		0
XOGT-160512-PDER	20,8	16	2,5	5	1,2		0
XOGT-160516-PDER	20,7	16	2,6	5	1,6		0
XOGT-160520-PDER	20,4	16	2,8	5	2		0
XOGT-160530-PDER	19,8	16	3,3	5	3		0
XOGT-160532-PDER	19,6	16	3,5	5	3,2		0

Информацию о сплавах см. стр. Б-121-123


Рекомендации по выбору режимов резания

* При использовании данной пластины требуется доработка корпуса

Базовые режимы резания

Для концевых фрез серии ALXM

Обрабатываемый материал	Твердость	Сплав	Режимы резания	Полный паз Ае	Уступ НАВ ДАР
			V (м/мин)	700	750-880
Алюминиевые сплавы	50-110 HB	FZ05	Fz (мм/об)	0,2	0,15-0,2
			Ар (мм)	6	8-12
			V (м/мин)	50	60
Титановые сплавы	35-43 HRC	JC5118	Fz (мм/об)	0,08	0,08-0,1
			Ар (мм)	6	8-12
			V (м/мин)	125	150
Нержавеющие стали	до 250 НВ	JC5118	Fz (мм/об)	0,05	0,1
			Ар (мм)	1-2	2-8

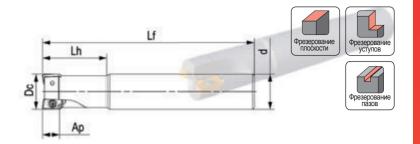
Для торцовых фрез серии ALX

Обрабатываемый материал	Твердость	Сплав	Ар, мм	Vс, м/мин	Fz , мм/зуб
Алюминиевые сплавы	50-110 HB	FZ05	3-8	1000	0,07-0,2
Титановые сплавы	35-43 HRC	JC5118	2-8	60	0,06-0,08
Нержавеющие стали	до 250 НВ	JC5118	2-3	150	0,05-0,1

Для сменных головок серии MAL

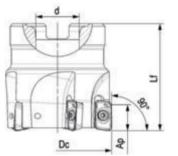
Обрабатываемый материал	Твердость	Сплав	Режимы резания	Полны й паз <u>Ae</u> Т _{Ар}	Уступ Де Де
			V (м/мин)	620-880	620-880
Алюминиевые сплавы	50-110 HB	FZ05	Fz (мм/об)	0,05-0,15	0,05-0,06
			Ар (мм)	0,5-8	1-12
			V (м/мин)	50	60
Титановые сплавы	35-43 HRC	JC5118	Fz (мм/об)	0,05-0,08	0,04-0,06
			Ар (мм)	3-8	1-10
			V (м/мин)	120-150	120-150
Нержавеющие стали	до 250 НВ	JC5118	Fz (мм/об)	0,05-0,1	0,05-0,1
			Ар (мм)	1-3	2-7

Окончательные режимы резания определяются в конкретных условиях, в зависимости от жесткости технологической системы. Более подробную информацию по режимам резания смотрите на сайте www.s-t-group.com в каталоге DIJET.


[•] складская программа; ○ производственная программа; □ изготавливается под заказ

Серия FAP90

Концевые фрезы FAP90

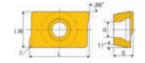

- ✓ Самая популярная конструкция среди концевых фрез с пластинами АР**;
- Фреза предназначена для фрезерования плоскостей, уступов и пазов при тяжёлой и обычной обработке;
- Фреза оснащается универсальными пластинами, которые взаимозаменяемы с различными изготовителями.

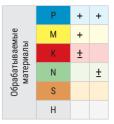
(1) Главный угол в плане: ψ = 90°; Максимальная глубина фрезерования: для AP*1135* Ap = 10 мм, для AP*1604* Ap = 15 мм.

Обозначение		Dc, мм	d, мм	Lf, мм	Lh,	Ар, мм	Z	Пластина	Винт	Ключ
FAP90-P16-16-2-AP11-120	0	16	16	120	35	10	2			
FAP90-P16-16-2-AP11-170	0	16	16	170	40	10	2			
FAP90-P16-17-2-AP11-150	0	17	16	150	40	10	2			
FAP90-P16-17-2-AP11-200	0	17	16	20	50	10	2			
FAP90-P20-20-2-AP11-120	0	20	20	120	35	10	2	AP*1135*	SA025065	T08P
FAP90-P20-20-2-AP11-170	0	20	20	170	40	10	2	AF-1135-	SAU25005	100P
FAP90-P20-21-2-AP11-150	0	21	20	150	40	10	2			
FAP90-P20-21-2-AP11-200	0	21	20	200	50	10	2			
FAP90-P25-25-3-AP11-120	0	25	25	120	35	10	3			
FAP90-P25-25-3-AP11-170	0	25	25	170	40	10	3			
FAP90-P25-25-2-AP16-120	0	25	25	120	35	15	2			
FAP90-P25-25-2-AP16-170	0	25	25	170	40	15	2			
FAP90-P25-26-2-AP16-160	0	26	25	160	40	15	2			
FAP90-P25-26-2-AP16-200	0	26	25	200	50	15	2	AP*1604*	SA0411	T15P
FAP90-P32-32-3-AP16-160	0	32	32	160	40	15	3	AF"1004"	3AU411	115P
FAP90-P32-32-3-AP16-200	0	32	32	200	50	15	3			
FAP90-P32-40-4-AP16-160	0	40	32	160	40	15	4			
FAP90-P32-40-4-AP16-200	0	40	32	200	50	15	4			

Торцевые фрезы FAP90

Обозначение		Dc, мм	d, мм	Lf MM	Ар, мм	Z	Пластина	Винт	Ключ
FAP90-A16-40-5-AP11	0	40	16	50	10	5			
FAP90-A22-50-6-AP11	0	50	22	50	10	6	AP*1135*	SA025065	T08P
FAP90-A22-63-7-AP11	0	63	22	50	10	7			
FAP90-A22-50-4-AP16	0	50	22	50	15	4			
FAP90-A22-63-5-AP16	0	63	22	50	15	5	AP*1604*	SA0411	T15P
FAP90-A27-80-6-AP16	0	80	27	50	15	6			





Пластины режущие

				Размеры				VD
	Обозначение	L	W1	s	RE	BS	PY2575B	PY2072
Черновая	APMT1135PDER-U2	11,4	6,22	3,5	0,8	1	•	
	APMT1135PDER-FM	11,4	6,22	3,5	0,8	1	•	
Получист.	APMT1135PDER-SD	11,4	6,22	3,5	0,8	1	•	•
	APMT1135PDER-FU	11,4	6,22	3,5	0,8	1	•	•
Черновая	APMT1604PDER-U2	17,4	9,27	4,8	0,8	1,5	•	•
	APMT1604PDER-FM	17,4	9,27	4,8	0,8	1,5	•	•
Получист.	APMT1604PDER-SD	17,4	9,27	4,8	0,8	1,5	•	•
	APMT1604PDER-FU	17,4	9,27	4,8	0,8	1,5	•	•

Рекомендации по выбору режимов резания

Базовые режимы резания

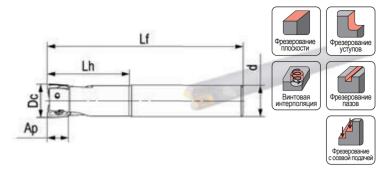
Для концевых фрез серии FAP90 (пластина AP □ □ 11)

			(Обработка паз	a	Обраб	отка уступа, А	e=1/3D
Обрабатываемый материал	Твердость	Сплав	Vс, м/мин	Fz, мм/зуб	Ар, мм	Vс, м/мин	Fz, мм/зуб	Ар, мм
Углеродистые стали	≤250HB	PY2072 PY2575B	150	0,10-0,20	До 3/20	200	0,12-0,25	1/3D
Литейные стали	≤285HB	PY2072 PY2575B	150	0,10-0,20	До 3/20	200	0,12-0,25	1/3D
Штамповые стали	≤255HB	PY2575B	140	0,10-0,20	До 3/20	180	0,12-0,25	1/3D
Стали для прессформ	30-42HRC	PY2575B	110	0,08-0,15	До 3/20	140	0,10-0,20	1/3D
Чугуны (СЧ, ВЧ)	≤300HB	PY2575B	150	0,10-0,20	До 3/20	200	0,12-0,25	1/3D
Нержавеющие аустенитные стали	≤250HB	PY2575B	110	0,08-0,20	До 3/20	140	0,10-0,25	1/3D
Нержавеющие мартенстные стали	≤250HB	PY2575B	150	0,08-0,20	До 3/20	200	0,10-0,25	1/3D
Алюминиевые сплавы	≤110HB	PY2072	250	0,10-0,25	До 3/20	350	0,15-0,30	1/3D

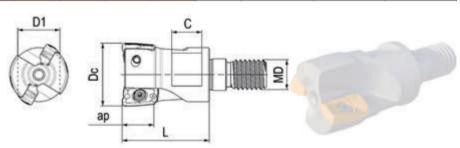
Для концевых фрез серии FAP90 (пластина AP □ □ 16)

			(Обработка паз	a	Обраб	отка уступа, А	e=1/3D
Обрабатываемый материал	Твердость	Сплав	Vс, м/мин	Fz, мм/зуб	Ар, мм	Vс, м/мин	Fz, мм/зуб	Ар, мм
Углеродистые стали	≤250HB	PY2072 PY2575B	150	0,12-0,30	До 3/20	200	0,15-0,30	1/3D
Литейные стали	≤285HB	PY2072 PY2575B	150	0,12-0,30	До 3/20	200	0,15-0,30	1/3D
Штамповые стали	≤255HB	PY2575B	140	0,12-0,30	До 3/20	180	0,15-0,30	1/3D
Стали для прессформ	30-42HRC	PY2575B	110	0,08-0,20	До 3/20	140	0,10-0,20	1/3D
Чугуны (СЧ, ВЧ)	≤300HB	PY2575B	150	0,12-0,30	До 3/20	200	0,15-0,30	1/3D
Нержавеющие аустенитные стали	≤250HB	PY2575B	110	0,12-0,20	До 3/20	140	0,15-0,20	1/3D
Нержавеющие мартенстные стали	≤250HB	PY2575B	150	0,10-0,20	До 3/20	200	0,10-0,20	1/3D
Алюминиевые сплавы	≤110HB	PY2072	250	0,15-0,35	До 3/20	350	0,15-0,35	1/3D

Корпуса поставляются без пластин



Серия FAP90 G2

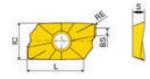

Концевые фрезы FAP90 G2

- ✓ Вторая генерация самых популярных фрезерных пластин АР**;
- ✓ Развитие 3D моделирования привело к созданию режущих пластин со сложной передней поверхностью, которая призвана обеспечить лучшее стружкодробление и снизить усилия резания;
- ✓ Наличие зачистной кромки в комплексе со сверх позитивной геометрией позволяют получать отличную шероховатость, даже при работе с большой глубиной резания и высокой подачей.
- Главный угол в плане: ψ = 90°; Максимальная глубина фрезерования: Ар = 10 мм

Обозначение		Dс, мм	d, мм	Lf, MM	Lh, мм	ар, мм	Z	Пластина	Винт	Ключ	
FAP90G2-P16-16-2-BX11-100	0	16	16	120	35	10	2				
FAP90G2-P16-17-2-BX11-150	0	17	16	150	40	10	2				
FAP90G2-P20-20-2-BX11-120	0	20	20	120	35	10	2	AX*11T3*	SA025065	SA025065	T08P
FAP90G2-P20-21-2-BX11-200	0	21	20	170	40	10	2	AX IIIS			1000
FAP90G2-P25-25-3-BX11-120	0	25	25	120	35	10	3				
FAP90G2-P25-26-3-BX11-200	0	26	25	170	40	10	3				

Модульные фрезерные головки FAP90 G2

Обозначение		Dc, мм	MD,	L,	D1, мм	ар, мм	Z	Пластина	Винт	Ключ
FAP90G2-M8-17-2-BX11	0	17	M8	25	12	10	2			
FAP90G2-M10-21-2-BX11	0	21	M10	29	14	10	2	AX*11T3*	SA025065	T08P
FAP90G2-M12-26-3-BX11	0	26	M12	37	17	10	3			


• складская программа; ○ производственная программа; □ изготавливается под заказ

Пластины режущие

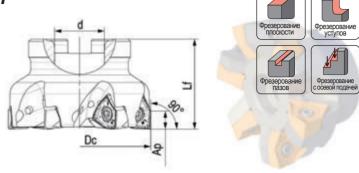
		Размеры								
Обозначение	L	W1	S	RE	BS	PY2570	PY2571			
AXKT11T304PEER-M	12,2	6,8	3,7	0,4	1,8	•				
AXKT11T308PEER-M	12,2	6,8	3,7	0,8	1,4	•	0			
AXKT11T308PEER-M2	12,2	6,8	3,7	8,0	1,4	•				

Рекомендации по выбору режимов резания

Базовые режимы резания

Для концевых фрез серии FAP90 G2 (пластина АХ □ □ 11)

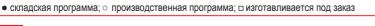
				Обработка паза	a	Обраб	отка уступа, Ає	=1/3D
Обрабатываемый материал	Твердость	Сплав	Vc, м/мин	Fz, мм/зуб	Ар, мм	Vc, м/мин	Fz, мм/зуб	Ар, мм
Углеродистые стали	≤250HB	PY2571 PY2570	150	0,10-0,20	До 3/20	200	0,12-0,25	1/3D
Литейные стали	≤285HB	PY2571 PY2570	150	0,10-0,20	До 3/20	200	0,12-0,25	1/3D
Штамповые стали	≤255HB	PY2571	140	0,10-0,20	До 3/20	180	0,12-0,25	1/3D
Стали для прессформ	30-42HRC	PY2571	110	0,08-0,15	До 3/20	140	0,10-0,20	1/3D
Нержавеющие аустенитные стали	≤250HB	PY2570	110	0,08-0,20	До 3/20	140	0,10-0,20	1/3D
Нержавеющие мартенстные стали	≤250HB	PY2570	150	0,08-0,20	До 3/20	200	0,10-0,25	1/3D
Жаропрочные сплавы	≤300HB	PY2570	80	0,08-0,20	До 3/20	100	0,10-0,20	1/3D



Серия WTRS Trigon Power Shoulder

Торцевые фрезы WTRS Ø40-200 мм

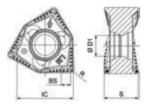
- Высокоэффективная черновая и получистовая обработка уступов, плоскостей и пазов;
- Низкие силы резания, криволинейная передняя поверхность;
- ✓ Режущие пластины повышенной прочности, за счёт увеличения толщины пластин;
- ✓ Двухсторонняя пластина с 6-ю режущими кромками.
- Максимальная глубина фрезерования: Ар = 8 мм

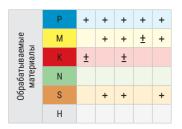


Обозначение		Dс, мм	d, мм	Lf, MM	ар, мм	Z	Пластина	Винт	Ключ
WTRS-A16-40-5-WN04	0	40	22	40	3,8	5			
WTRS-A22-50-6-WN04	0	50	22	40	3,8	6			
WTRS-A22-50-5-WN08	0	50	22	40	8	5			
WTRS-A22-63-6-WN08	0	63	22	40	8	6			
WTRS-A27-80-7-WN08	0	80	27	50	8	7	WN*X0806*	SA0411	T15P
WTRS-B32-100-8-WN08	0	100	32	50	8	8			
WTRS-B40-125-10-WN08	0	125	40	63	8	10			
WTRS-C40-160-12-WN08	0	160	40	63	8	12			
WTRS-C60-200-16-WN08	0	200	60	63	8	16			

Концевые фрезы WTRS Ø20-40 мм

Обозначение		Dс, мм	Lf,	Lh, мм	ар, мм	Пластина	Винт	Ключ
WTRS-P20-20-2-WN04-120	0	20	120	35	3,8			
WTRS-P20-20-3-WN04-120	0	20	120	35	3,8			
WTRS-P20-21-3-WN04-120	0	21	120	35	3,8		SA025065	
WTRS-P25-25-4-WN04-120	0	25	120	35	3,8	WN*X0403*		T08P
WTRS-P25-26-4-WN04-120	0	26	120	35	3,8			
WTRS-P32-32-4-WN04-150	0	32	150	35	3,8			
WTRS-P32-33-4-WN04-150	0	33	150	35	3,8			
WTRS-W32-32-2-WN08-120	0	32	120	35	8	WN+V0006+	040411	T15D
WTRS-W32-40-4-WN08-120	0	40	120	35	8	WN*X0806*	SA0411	T15P





Пластины режущие

		Разм	иеры				PVD		
Обозначение	IC	s	RE	BS	PP2585	PY2080	PY2570	PY2571	PY3570
YNGX040304R-LM	6,5	4	0,4	0,85	0		0		
YNMX040308R-OM	6,5	4	0,8	0,5	0		•	0	
YNGX080604R-LM	12,85	6,45	0,4	2,5			0		
YNMX080608R-OL	12,85	7,8	0,8	1,1	•		•		
YNMX080608R-OM	12,85	7,8	0,8	0,8	•		•		0
YNGX080608R-LF	12,85	6,57	0,8	1,8		0	•		
YNGX080608R-LM	12,85	6,45	0,8	2		0	•		

Рекомендации по выбору режимов резания

Базовые режимы резания

			Обр-к	а плоскости,	Ae≤1D	Обр-ка уступа			
Обрабатываемый материал	Твердость	Сплав	V, м/мин	Fz, мм/зуб	Ар, мм	V, м/мин	Fz, мм/зуб	ар × ае, мм	
Углеродистые стали	≤250HB	PY2070	150	0,1-0,25	6	200	0,1-0,25	~ 45	
Литейные стали	≤285HB	PP2585	150	0,1-0,25	6	180	0,1-0,25	~ 45	
Штамповые стали	≤255HB	PY2070	150	0,06-0,23	6	200	0,06-0,23	~ 45	
Стали для прессформ	30-36HRC	PP2585	130	0,06-0,23	6	150	0,06-0,23	~ 30	
Чугуны (СЧ, ВЧ)	≤300HB	CD2070	180	0,1-0,25	6	250	0,1-0,25	~ 45	
Нержавеющие аустенитные стали	≤250HB	PY2570	110	0,1-0,18	4	120	0,1-0,18	~ 45	
Нержавеющие мартенстные стали	≤250HB	PY2570	150	0,1-0,20	4	180	0,1-0,20	~ 45	

Серия Super Diemaster

Торцовые фрезы HDM Ø 50-80 мм

- ✓ Серия со стандартным шагом пластин имеет систему двойного крепления пластин, что дает возможность увеличить глубину обработки.
- Положительный передний угол снижает силы резания до 21% по сравнению со аналогичными фрезами.
- ✓ Новые режущие пластины с увеличенной толщиной. Увеличение стойкости пластин до 68% по сравнению со стандартными пластинами.
- ✓ Пластины могут быть как со стружколомом, так и с плоской передней поверхностью.
- ✓ Корпус серии G-Body повышает долговечность фрезы и увеличивает стойкость пластин более чем на 30%.
- ✓ Корпус серии G-Воду защищен от коррозии.

() Корпус серии (©-Восіў) доп. информацию см. на стр. Б-11

Угол наклона:

У = +8°;

Максимальная глубина
фрезерования для торцевых фрез:

При размере пластины 12 мм - Ар = 4 мм;

При размере пластины 16 мм - Ар = 5 мм.

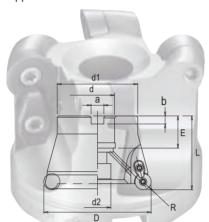


Рис.1 Стандартный шаг пластин

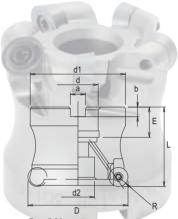
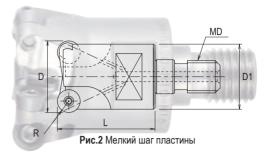


Рис.2 Мелкий шаг пластин

Обозначение		Рис.	D, мм	R,	L, mm	d, мм	d1, мм	а, мм	b, мм	Е,	d2, мм	z	Пластина	Винт	Ключ	Прихват
HDM-3050-12R-22	0	1	50	6	50	22	47	10,4	6,3	20	16,5	3	RD**1204MO*	DSW-410H	A-15T	DCM-18
HDM-3050-16R-22	0	1	50	8	55	22	47	10,4	6,3	20	16,5	٥	RD**1606MO*	DSW-4512H	A-20	DCM-17
HDM-4050-16R-22	0	2	50	8	55	22	47	10,4	6,3	20	16,5	4				
HDM-5050-12R-22	0	2	50	6	50	22	47	10,4	6,3	20	16,5	5	RD**1204MO*	DSW-410H	A-15T	
HDM-4052-16R-22	0	2	52	8	55	22	47	10,4	6,3	20	16,5	4	RD**1606MO*	DSW-4512H	A-20	-
HDM-5052-12R-22	0	2	52	6	50	22	47	10,4	6,3	20	16,5	5	RD**1204MO*	DSW-410H	A-15T	
HDM-4063-12R-22	0	1	63	6	50	22	60	10,4	6,3	20	16,5	4	KD 1204WO	D3VV-41011	A-101	DCM-18
HDM-4063-16R-22	0	1	63	8	50	22	60	10,4	6,3	20	16,5	4	RD**1606MO*	DSW-4512H	A-20	DCM-17
HDM-5063-16R-27	0	2	63	8	50	27	60	12,4	7	22	20	5				
HDM-5066-16R-27	0	2	66	8	50	27	60	12,4	7	22	20	5				
HDM-6063-12R-27	0	2	63	6	50	27	60	12,4	7	22	20	_	RD**1204MO*	DSW-410H	A-15T	
HDM-6066-12R-27	0	2	66	6	50	27	60	12,4	7	22	20	6	RD**1204MO*	DSW-410H	A-15T	-
HDM-6080-16R-27	0	2	80	8	55	27	76	12,4	7	22	20	6	RD**1606MO*	DSW-4512H	A-20	
HDM-7080-12R-27	0	2	80	6	55	27	76	12,4	7	22	20	7	RD**1204MO*	DSW-410H	A-15T	



Сменные головки SDH (Ø 15-40мм)

Стандартный шаг пластин

Обозначение		Рис.	D, мм	R, mm	L,	D1, мм	MD,	Момент затяжки, Нм	Z	Пластина	Винт	Ключ	Прихват
SDH-2150-R07-M8	0	1	15	3,5	23	13,8	M8	16	2		TSW-2556H		-
SDH-2160-R07-M8	0	1	16	3,5	23	15	M8	16	2	DD**07T2MO*		A08SD	
SDH-2200-R07-M10	0	1	20	3,5	30	18	M10	16	2	RD**07T2MO*			
SDH-2220-R07-M10	0	1	22	3,5	30	20	M10	16	2				
SDH-2250-R10-M12	0	2	25	5	35	23	M12	20	2		CSW-408H	- A-15	
SDH-2280-R10-M12	0	2	28	5	35	25	M12	20	2	RD**1004MO*			DCM-18
SDH-2300-R10-M16	0	2	30	5	43	28	M16	25	2				
SDH-2320-R12-M16	0	2	32	6	43	28	M16	25	2	RD**1204MO*	DSW-410H		
SDH-3320-R10-M16	0	2	32	5	43	28	M16	25	3	RD**1004MO*	CSW-408H		
SDH-2350-R12-M16	0	2	35	6	43	32	M16	25	2	RD**1204MO*	DSW-410H		
SDH-3350-R10-M16	0	2	35	5	43	32	M16	25	3	RD**1004MO*	CSW-408H		
SDH-2400-R12-M16	0	1	40	6	43	32	M16	25	2	RD**1204MO*	DSW-410H		

Мелкий шаг пластин

Обозначение		Рис.	D, MM	R,	L, MM	D1, мм	MD,	Момент затяжки, Нм	Z	Пластина	Винт	Ключ	
SDH-3200-R07-M10	0	2	20	3,5	30	18	M10	16	3	RD**07T2MO*	TSW-2556H	A08SD	
SDH-3250-R10-M12	0	2	25	5	35	23	M12	20	3				
SDH-4300-R10-M16	0	2	30	5	43	28	M16	25	4	RD**1004MO*	CSW-408H		
SDH-4320-R10-M16	0	2	32	5	43	28	M16	25	4				
SDH-3350-R12-M16	0	2	35	6	43	32	M16	25	3	RD**1204MO*	DSW-410H	A-15	
SDH-4350-R10-M16	0	2	35	5	43	32	M16	25	4	RD**1004MO*	CSW-408H		
SDH-4400-R12-M16	0	2	40	6	43	32	M16	25	4	RD**1204MO*	DSW-410H		
SDH-5420-R10-M16	0	2	42	5	43	32	M16	25	5	RD**1004MO*	CSW-408H		

Информацию о цилиндрических хвостовиках см. на стр. Б-118-120

Информацию об оправках для фрезерных головок см. в разделе Е.

прочные и острые

RDMW-MOT

Сталь

Упрочняющая фаска

RDGT-MOT

Нержавеющая сталь
Углеродистая сталь
Упрочненная фаска
и скругление

RDGT-MOE

Титан. и никел. сплавы

Скругление острой кромки

Корпуса поставляются без пластин

[•] складская программа; ○ производственная программа; □ изготавливается под заказ

Операции, выполняемые фрезами SUPER END CHIPPER

Рекомендации по выбору типа пластин и сплава

Обрабатываемый материал	Чугуны, литейные стали	иные погирования		стали, стали	Штампов	вые стали	Закаленные стали		е сплавы, ые сплавы	Нержавеющие стали		Алюминий
Сплавы	JC8015 JC8118	JC5040	JC8118	JC8050	JC8015 JC8118	JC8050	DH103 (более 50HRC) JC8015 JC8118	JC8015 JC8118	JC8050	JC8015 JC8118	JC8050	FZ05
RDMW07T2MOT	•	•			•		•	0		0		
RDT07T2MOE	*		*	•	0	•		0	•	•	•	
RDGT07T2MOF-AL												•
RDMW1004MOT	•	•			•		•	0		0		
RDT1004MOT	*		*		0					•		
RDT1004MOE				•		•		•	•		•	
RDGT1004MOF-AL												•
RDMW1204MOT	•	•			•		•	0		0		
RDT1204MOT	*		*		0					•		
RDT1204MOE				•		•		•	•		•	
RDGT1204MOF-AL												•
RDMW1606MOT	•	•			•		•	0		0		
RDT1606MOT	*		*		0					•		
RDT1606MOE				•		•		•	•		•	
RDGT1606MOF-AL												•

Ф - Первый выбор; О - Хорошо; Ф - Возможно к применению; ★ - Только для чистовой обработки * RDMW - без стружколома; RDGT, RDMT - со стружколомом

Пластины режущие

Рис 1

Рис 2

I

						1 71012	-			•	,,,,,,	
Обозначение	Рис.	D,	T,	d,	Допуск на	Момент			С покрытие	И		Без покрытия
Ооозначение	PHC.	ММ	ММ	MM	толщину	затяжки, Нм	DH103	JC8015	JC5040	JC8050	JC8118	FZ05
RDMW07T2MOT	1	7	2,7	2,8	М	0,5	0	0	0			
RDMW1004MOT	1	10	4,1	4,4	M	0,5	0	0	0			
RDMW1204MOT	1	12	4	4,4	М	0,5	0	0	0			
RDMW1606MOT	1	16	6	5	M	0,9	0	0	0			
RDGT07T2MOE	2	7	2,7	2,8	G	0,9		0		0		
RDGT1004MOE	2	10	4,1	4,4	G	0,9		0		0		
RDGT1004MOT	2	10	4,1	4,4	G	0,9		0		0		
RDGT1204MOE	2	12	4,7	4,4	G	1,2		0		0		
RDGT1204MOT	2	12	4,7	4,4	G	1,2		0		0		
RDGT1606MOE	2	16	6	5	G	1,2		0		0		
RDGT1606MOT	2	16	6	5	G	1,2		0		0		
RDMT07T2MOE	2	7	2,7	2,8	М	2				0	0	
RDMT1004MOE	2	10	4,1	4,4	М	2				0	0	
RDMT1004MOE-ML	2	10	4,1	4,4	М	2				0		
RDMT1004MOT	2	10	4,1	4,4	М	2				0	0	
RDMT1204MOE	2	12	4,7	4,4	M	2				0	0	
RDMT1204MOE-ML	2	12	4,7	4,4	М	2				0		
RDMT1204MOT	2	12	4,7	4,4	М	3				0	0	
RDMT1606MOE	2	16	6	5	М	3				0	0	
RDMT1606MOT	2	16	6	5	М	3				0	0	
RDGT07T2MOF-AL	3	7	2,7	2,8	G	3						0
RDGT1004MOF-AL	3	10	4,1	4,4	G	4						0
RDGT1204MOF-AL	3	12	4	4,4	G	4						0
RDGT1606MOF-AL	3	16	8	5	G	4						0

Информацию о сплавах см. стр. 121-123

Концевые черновые фрезы

Пластины режущие

Обозначение	D, T,		d,	Допуск на			С покрытием		
Ооозначение	ММ	ММ	ММ	толщину	PY3070	PD1572	PY2571	CP2571	PY1573
RDKW10T3MO	10	3,97	4,4	K	0	0	0		
RDKW1204	12	4,76	4,4	K			0	0	0

Рекомендации по выбору режимов резания

Номинальные режимы резания для торцовых фрез серии НDМ

Обрабатываемый материал	Твердость	Сплав	Ар, мм	Vс, м/мин	Fz , мм/зуб
Углеродистые стали (сталь 50)	менее 250НВ	JC8050 JC5040 JC8118	0,5-5	120-200	0,3-0,42
Штамповые стали (40ХГМА)	30-43HRC	JC8050 JC8118 JC8015 (более40HRC)	0,4-3,5	110-190	0,3-0,5
Штамповые стали (4Х5МФ1С, 1.2379)	менее 255НВ	JC5040 JC8118	0,4-4	110-185	0,3-0,5
Нержавеющие стали (08X18H10, 1.4401)	менее 250НВ	JC8050 JC8015 JC8118	0,5-4	90-155	0,3-0,45
Закаленные штамповые стали (4Х5МФ1С, 1.2379)	40-50HRC	JC8118 JC8015 (RDMW) (DH103 более 50HRC)	0,3-2	75-125	0,2-0,3
Серые (Сч25,Сч30) и высокопрочные чугуны (Вч60-2, Вч79-2)	менее 300НВ	JC8015 JC8118	0,5-4	105-175	0,35-0,45
Титановые сплавы	35-43HRC	JC8050 JC8015 JC8118	0,2-1,5	40-65	0,2-0,5
Жаропрочные сплавы	35-43HRC	JC8015 JC8118 JC8050	0,2-1,5	20-30	0,2-0,5
Алюминиевые сплавы	50-110 HB	FZ05 (пластина RDGT)	1-6	350-700	0,3-0,4

ullet складская программа; \circ производственная программа; \Box изготавливается под заказ

Рекомендации по выбору режимов резания

Номинальные режимы резания

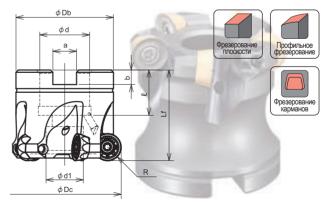
Для торцовых фрез серии HDM, высокоскоростная обработка

Обрабатываемый материал	Твердость	Сплав	Ар, мм	Vс, м/мин	Fz , мм/зуб
Углеродистые стали (сталь 50)	менее 250НВ	JC8015 (RDMW)	0,3-1,9	150-250	0,40-0,55
Штамповые стали (40ХГМА)	30-43HRC	JC8015 (RDMW)	0,3-1,9	140-240	0,4-0,55
Штамповые стали (4Х5МФ1С, 1.2379)	менее 255НВ	JC8015 (RDMW)	0,3-1,9	140-240	0,4-0,55
Нержавеющие стали (08Х18Н10, 1.4401)	менее 250НВ	JC8015 (RDMW)	0,3-1,9	125-210	0,4-0,55
Закаленные штамповые стали (4Х5МФ1С, 1.2379)	40-50HRC	DH103	0,2-1,2	100-170	0,35-0,65
Серые (Сч25,Сч30) и высокопрочные чугуны (Вч60-2, Вч79-2)	менее 300НВ	DH103	0,3-1,9	140-230	0,55-0,75
Алюминиевые сплавы	50-110 HB	FZ05 (пластина RDGT)	0,4-2,1	550-850	0,55-0,7

Для сменных головок SDH с твердосплавными оправками MSN

Обрабатываемый материал	Твердость	Сплав	Ар, мм	Vс, м/мин	Fz , мм/зуб
Углеродистые стали (сталь 50)	менее 250НВ	JC8050 JC5040 JC8118	0,5-2,5	155-165	0,2-0,23
Штамповые стали (40ХГМА)	30-43HRC	JC8050 JC8118 JC8015 (более40HRC)	0,5-2,5	150-155	0,2-0,23
Штамповые стали (4Х5МФ1С, 1.2379)	менее 255НВ	JC5040 JC8118	0,5-2,5	150-155	0,2-0,23
Нержавеющие стали (08Х18Н10, 1.4401)	менее 250НВ	JC8050 JC8015 JC8118	0,5-2,5	120-125	0,2-0,24
Закаленные штамповые стали (4Х5МФ1С, 1.2379)	40-50HRC	JC8118 JC8015 (RDMW) (DH103 6onee 50HRC)	0,3-1,5	100-115	0,2-0,24
Серые (Сч25,Сч30) и высокопрочные чугуны (Вч60-2, Вч79-2)	менее 300НВ	JC8015 JC8118	0,6-2,5	140-145	0,23-0,25
Титановые сплавы	35-43HRC	JC8050 JC8015 JC8118	0,2-0,5	50-55	0,22-0,25
Жаропрочные сплавы	35-43HRC	JC8015 JC8118 JC8050	0,2-0,5	25-30	0,15-0,18
Алюминиевые сплавы	50-110 HB	FZ05 (пластина RDGT)	1,2-3,5	330-400	0,28-0,35

Для сменных головок SDH с твердосплавными оправками MSN, высокоскоростная обработка


Обрабатываемый материал	Твердость	Сплав	Ар, мм	Vс, м/мин	Fz , мм/зуб
Углеродистые стали (сталь 50)	менее 250НВ	JC8015 (RDMW)	0,1-0,3	270-340	0,28-0,3
Штамповые стали (40ХГМА)	30-43HRC	JC8015 (RDMW)	0,1-0,3	210-270	0,23-0,25
Штамповые стали (4Х5МФ1С, 1.2379)	менее 255НВ	JC8015 (RDMW)	0,1-0,3	210-270	0,23-0,25
Нержавеющие стали (08Х18Н10, 1.4401)	менее 250НВ	JC8015 (RDMW)	0,1-0,3	180-225	0,27-0,3
Закаленные штамповые стали (4Х5МФ1С, 1.2379)	40-50HRC	DH103	0,06-0,2	200-250	0,23-0,25
Серые (Сч25,Сч30) и высокопрочные чугуны (Вч60-2, Вч79-2)	менее 300НВ	DH103	0,1-0,3	285-360	0,28-0,3
Алюминиевые сплавы	50-110 HB	FZ05 (пластина RDGT)	0,7-2	540-630	0,3-0,4

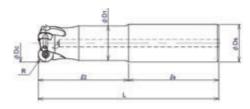
Окончательные режимы резания определяются в конкретных условиях, в зависимости от жесткости технологической системы. Более подробную информацию по режимам резания смотрите на сайте www.s-t-group.com в каталоге DIJET.

Серия Blade Chipper

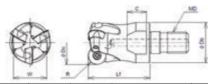
Торцовые фрезы ТОМ

- Высокая скорость и высокое качество обработки нержавеющей стали и лопаток турбин;
- Пластины расположены с неравномерным шагом, что предотвращает выкрашивание и вибрации;
- ✓ Сплав JC7560P с новым PVD покрытием имеет улучшенное сопротивление к термическому разрушению и повышенную ударную вязкость.

Обозначение		Dc,	R,	Lf,	Db, мм	d, MM	d1, мм	а, мм	b, мм	I, MM	Z	Пластина	Винт	Ключ
TDM-5040R-10-16	0	40	5	40	37	16	13,5	8,4	5,6	18		DDMT40T2MOE **	DOW 20711	A 40
TDM-5042R-10-16	0	42	5	40	38	16	13,5	8,4	5,6	18	5	RPMT10T3MOE-**	DSW-307H	A-10
TDM-5050R-12-22	0	50	6	40	43	22	16,5	10,4	6,3	20	5	RPMT1204MOE-**	DSW-410H	A 45T
TDM-5052R-12-22	0	52	6	40	43	22	16,5	10,4	6,3	20		RPINITIZU4INIOE-***	DSVV-410H	A-15T


ullet складская программа; \circ производственная программа; \Box изготавливается под заказ

Концевые фрезы TDM



Обозначение		Dc, мм	R, мм	I2, мм	ls, MM	L, MM	D1, мм	Ds, мм	Z	Пластина	Винт	Ключ
TDM-3025-60-S25	0	25	5	60	60	120	23	25	3	RPMT10T3MOE-**	DSW-307H	A-10
TDM-4032-70-S32	0	32	5	70	60	130	29	32	4	RPIVITIUTSIVICE-	D944-901U	A-10

Сменные головки MTD

Обозначение		Dс, мм	R, mm	If, MM	Db, мм	MD	С,	W, MM	Z	Пластина	Винт	Ключ
MTD-3025-10-M12	0	25	5	35	23	M12	11	19	3	RPMT10T3MOE	DSW-307H	A-10
MTD-4032-10-M16	0	32	5	43	29	M16	12	22	4	KEWI IUTSWICE	D3W-30/H	A-10

Пластины режущие

Рис.1

Рис.2

Puc 3

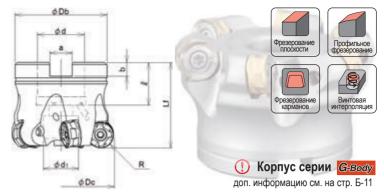
Обозначение	Рис.	Dc, мм	Т,	D, мм	Допуск на толщину	Момент затяжки, Нм	С покрытием JC7560P
RPMT10T3MOE-MM4	2	10	3,97	3,5	М	2,5	0
RPMT10T3MOE-MH4	3	10	3,97	3,5	M	2,5	0
RPMT1204MOE-MM8	1	12	4,76	4,4	М	3,6	0
RPMT1204MOE-MM4	2	12	4,76	4,4	M	3,6	0
RPMT1204MOE-MH4	3	12	4,76	4,4	М	3,6	0

Рекомендации по выбору режимов резания

		Vo		F-1/611114	****		Диаметр, мм					
Обрабатываемый материал	Сплав	Vс, м/мин	Стружколом	Глубина	резания		Ø	50	ø 52			
				Ар, мм	Ар, мм		n, об/мин	F, мм/мин	n, об/мин	F, мм/мин		
			MM8	0515	0,5	0,55		4202		4040		
Мартенситная	Мартенситная ЈС7560Р 190-29	100 000	IVIIVIO	0,5-1,5	1,5	0,40	4500	3056	1469	2938		
нержавеющая сталь	JC/560P	190-290	MM4 (MH4)	0,5-3	2,0	0,30	1528	2292		2204		
					3,0	0,25		1910		1836		
			MANAO	0545	0,5	0,55		3152		3031		
Аустенитная	Аустенитная	420.020	MM8	0,5-1,5	1,5	0,40	44.40	2292		2204		
нержавеющая сталь JC7	JC7560P	60P 130-230 -	MM4	0.5.2	2,0	0,30	1146	1719	1102	1653		
			(MH4)	0,5-3	3,0	0,25		1433		1370		

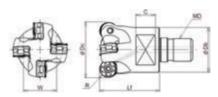
При вылете инструмента от 3Dc до 5Dc уменьшить скорость и подачу на 30%

Корпуса поставляются без пластин


[•] складская программа; ○ производственная программа; □ изготавливается под заказ

Серия Extreme Diemate

Торцовые фрезы EXTDM


- ✓ Фреза для обработки нержавеющей стали
- ✓ Более острая и прочная винтовая режущая кромка;
- Пластина с индексируемым поворотом и защитой от проворота во время работы;
- Сплав JC7560P с новым PVD покрытием с большей стойкостью пластины по сравнению с JC7560;
- ✓ Неравномерный шаг зубьев при Z > 3.

Обозначение	Обозначение		R,	Lf,	Db,	d, MM	d1, мм	а, мм	b, мм	l, MM	Z	Пластина	Винт	Ключ
EXTDM-5050R-12-22	0	50	6	40	43	22	16,5	10,4	6,3	20	5			
EXTDM-5052R-12-22	0	52	6	40	43	22	16,5	10,4	6,3	20	5			
EXTDM-6063R-12-22	0	63	6	40	48	22	16,5	10,4	6,3	20	6	RNMU1205MOE-MM	TSW-410H	A-15T
EXTDM-6063R-12-27	0	63	6	50	58	27	20	12,4	7	22	6			
EXTDM-6066R-12-27	0	66	6	50	60	27	20	12,4	7	22	6			

Сменные головки МТХ

Обозначение		Dc,	R, mm	Lf,	Db, мм	MD	С,	W, MM	Z	Пластина	Винт	Ключ
MTX-3032-12-M16	0	32	6	43	28	M16	12	22	3	RNMU1205MOE-MM	TSW-410H	A-15T
MTX-4040-12-M16	0	40	6	43	32	M16	14	26	4	RINIVIU IZUDIVIUE-IVIIVI	1500-4100	A-151

Пластины режущие

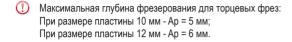
Обозначение	Dс, мм	Т,	D, мм	Допуск на толщину	Момент затяжки, Нм	С покрытием JC7550
RNMU1205MOE-MM	12	5,3	4,6	M	3,5	0

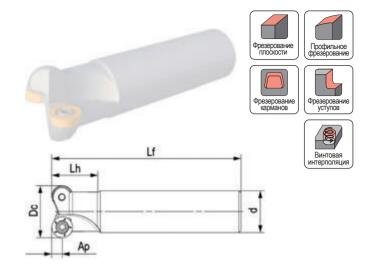
Рекомендации по выбору режимов резания

				Глуб	бина		Диаметр, мм							
Обрабатываемый	C	Vс, м/мин	Стружколом	реза		Fz,	ø	32	ø	40	ø 50	, 52	ø 63	3, 66
материал	Сплав			Ар, мм	Ар, мм	мм/зуб	n, об/мин	F, мм/мин	n, об/мин	F, мм/мин	n, об/мин	F, мм/мин	n, об/мин	F, мм/мин
					0,5	0,55		3610		3852		3704		3498
	Мартенситная ержавеющая сталь JC7560P 170-2				1,0	0,40		2626		2802		2694	1060	2544
Мартенситная		170 270	MM	0,5-3,0	1,5	0,35	2188	2297	1751 210	2451	1347	2357		2226
нержавеющая сталь		300F 170-270	IVIIVI		2,0	0,30		1969		2101	1341	2021		1908
					2,5	0,27		1772		1891		1818		1717
					3,0	0,25		-		-		1683		1590
					0,5	0,55		2625		2801		2692		2544
					1,0	0,40		1909		2037		1958		1850
Аустенитная	JC7560P	120-200	MM	0.5-3.0	1,5	0,35	1591	1671	1072	1782	979	1713	771	1619
нержавеющая сталь	JC/300F	120-200	IVIIVI	0,5-5,0	2,0	0,30	1591	1432	1273	1528		1469	771	1388
					2,5	0,27	1289	1	1375		1322]	1249	
					3,0	0,25		-		-		1224		1157

При вылете инструмента от 3Dc до 5Dc уменьшить скорость и подачу на 30%

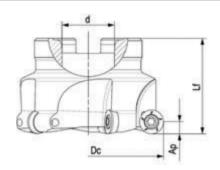
[•] складская программа; ○ производственная программа; □ изготавливается под заказ


Корпуса поставляются без пластин



Серия РМ01 Profiling Master

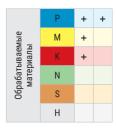
Концевые фрезы РМ01


- ✓ Универсальная серия для профильного фрезерования;
- ✓ Данная серия фрез позволяет производить врезание под углом, торцовое фрезерование, фрезерование уступов, плунжерное фрезерование.

Обозначение		D1, мм	d, мм	Lf,	Lh,	Ар, мм	Z	Пластина	Винт	Ключ	
PM01-P20-25-2-RP10-160-CR	0	25	20	160	45	5	2				
PM01-P25-30-2-RP10-160-CR	0	30	25	160	45	5	3		CR-05		
PM01-P32-35-3-RP1-160-CR	0	35	32	160	45	5	3	RP*1003*	SA03510 SA0409	T15P	
PM01-P32-40-3-RP10-160-CR	0	40	32	160	45	5	3				
PM01-P32-40-4-RP10-160-CR	0	40	32	160	45	5	4				
PM01-P25-32-2-RP12-160-CR	0	32	25	160	50	6	2				
PM01-P25-32-3-RP12-160-CR	0	32	25	160	50	6	3				
PM01-P32-32-2-RP12-160-CR	0	32	32	160	45	6	2		00.00		
PM01-P32-32-3-RP12-160-CR	0	32	32	160	45	6	3	RP*1204*	CR-R6 SA0409	T15P	
PM01-P32-35-2-RP12-160-CR	0	35	32	160	50	6	2		07,0403		
PM01-P32-40-3-RP12-200-CR	0	40	32	200	50	6	3				
PM01-P32-40-4-RP12-200-CR	0	40	32	200	50	6	4				

Торцевые фрезы РМ01

Обозначение		D1, мм	d, мм	Lf,	Ар, мм	Z	Пластина	Винт	Ключ	
PM01-A22-50-4-RP10-CR	0	50	22	50	5	4				
PM01-A22-63-5-RP10-CR	0	63	22	50	5	5	RP*1003*	CR-R5 SA03510	T15P	
PM01-A27-80-6-RP10-CR	0	80	27	50	5	6	KF 1003	SA03510 SA0409	1155	
PM01-B32-100-7-RP10-CR	0	100	32	50	5	7				
PM01-A22-50-4-RP12-CR	0	50	22	50	6	4				
PM01-A22-63-5-RP12-CR	0	63	22	50	6	5	DD*120/4*	CR-R6	T1ED	
PM01-A27-80-6-RP12-CR	0	80	27	50	6	6	RP*1204*	SA0409	T15P	
PM01-B32-100-7-RP12-CR	0	100	32	50	6	7				



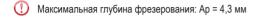
Пластины режущие

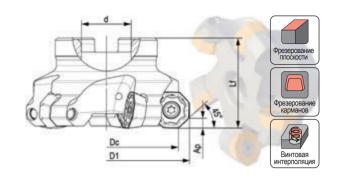
		Размеры							
Обозначение	IC	s	BS	PY2570	PY2072				
RPKT1204MOE-LM	10	3,18	11	0	•				
RPMW1003MOE-MR	12	4,76	11	0	•				

Рекомендации по выбору режимов резания

Базовые режимы резания

Обрабатываемый материал	Vс, м/мин	Fz, мм/зуб
Углеродистые стали	150 (100-200)	0,1-0,23
Литейные стали	100 (70-120)	0,1-0,23
Стали для прессформ	100 (70-120)	0,1-0,23
Нержавеющие стали	140 (100-170)	0,1-0,23
Чугуны (СЧ, ВЧ)	120 (80-140)	0,1-0,23
Титановые и жаропрочные сплавы	40 (30-60)	0,1-0,23

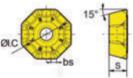


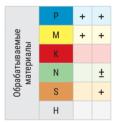


Серия OSMP OktoSurf Mill

Торцевые фрезы OSMP Ø 50-200 мм

- Многофункциональная фреза, обработка плоскостей и работа с врезанием;
- ✓ Острая геометрия;
- ✓ Высокоэффективная и экономичная обработка плоскостей за счет 8 режущих кромок;
- ✓ Наличие зачистной режущей кромки (Wiper) позволяет производить черновую и чистовую обработку с высокой производительностью и получать хорошую шероховатость обрабатываемой поверхности.




Обозначение		Dc, мм	D1, мм	d, мм	Lf, MM	Ар, мм	Z	Пластина	Винт	Ключ
OSMP-A22-50-4-0D06	0	50	60,4	22	40	4,3	4			
OSMP-A22-63-5-0D06	0	63	73,4	22	40	4,3	5			
OSMP-A27-80-6-0D06	0	80	90,4	27	50	4,3	6			
OSMP-A32-100-7-OD06	0	100	110,4	32	50	4,3	7	0D*0605ADR*	SA0512	T20P
OSMP-B40-125-8-OD06	0	125	135,4	40	63	4,3	8			
OSMP-C40-160-10-OD06	0	160	170,4	40	63	4,3	10			
OSMP-C60-200-12-OD06	0	200	210,4	60	63	4,3	12			

Пластины режущие

	Размеры								
Обозначение	IC	S	BS	PD2571	PY2570				
ODMT0605ADSR-UM	16,2	5,9	1,2						

Рекомендации по выбору режимов резания

Базовые режимы резания

Обрабатываемый материал	Твердость	Vc, м/мин	Fz, мм/зуб
Углеродистые стали	180-220 HB	250	0,2 (0,1-0,3)
Стали для прессформ	≤ 270 HB	200	0,15 (0,1-0,2)
Чугуны (СЧ, ВЧ)	≤ 300 HB	200	0,25 (0,1-0,35)
Нержавеющие стали	≤ 250 HB	150	0,15 (0,1-0,3)
Жаропрочные и титановые сплавы	≤ 400 HB	80	0,15 (0,1-0,2)
Цветные металлы	-	300	0,15 (0,1-0,3)

Серия S-Head

Монолитные сменные головки / Тип SMSA Ø 16-32 мм

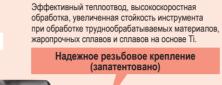
Многозубые твердосплавные фрезерные головки.

Положительная геометрия

Теплостойкое покрытие DV

Прекрасная тепло- и износостойкость.

Для обработки жаропрочных


и титановых сплавов

- ✓ Для обработки всех видов сталей и труднообрабатываемых материалов таких, как жаропрочные сплавы на основе Ті и Ni.
- Для чистовой обработки лопаток турбин, штампов и пресс форм.
- Экономичный вариант концевой фрезы большого диаметра.
- Цельнотвердосплавная головка в сочетании с твердосплавным хвостовиком позволяет работать на больших вылетах без вибрации.
- ✓ Торцевое биение 15 мкм, повторяемость при установке 10 мкм.

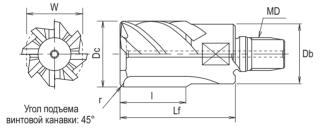
Радиус на уголках

Скругление режущей кромки на периферии с радиусом от 0,5 мм. Допуск на радиус менее 0,01 мм.

Высокая точность и повторямемость при переустановке

Биение: менее 0.015мм. Допуск: менее 0.010мм

Высокая производительность благодаря большому количеству режущих кромок


Высокая точность и производительность при чистовой обработке.

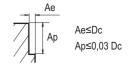
Внутренний подвод СОЖ

Внутренний подвод СОЖ обеспечивает высокую стойкость инструмента при торцевом фрезеровании.

Беспрепятственный отвод стружки из зоны резания

Стружка беспрепятственно удаляется из зоны резания. Это позволяет вести обработку одновременно по нескольким осям.

Обозначение		Dc, мм	r, MM	I, мм	Lf,	Db, мм	MD	Момент затяжки, Нм	W	Z	Сплав
SMSA-8160R05-M8	0	16	0,5	16	30	15	M8	16	14	8	
SMSA-8160R10-M8	0	16	1	16	30	15	M8	16	14	8	
SMSA-6160R20-M8	0	16	2	16	30	15	M8	16	14	6	
SMSA-6160R30-M8	0	16	3	16	30	15	M8	16	14	6	
SMSA-8200R05-M10	0	20	0,5	20	35	19	M10	16	17	8	
SMSA-8200R10-M10	0	20	1	20	35	19	M10	16	17	8	
SMSA-8200R20-M10	0	20	2	20	35	19	M10	16	17	8	
SMSA-6200R30-M10	0	20	3	20	35	19	M10	16	17	6	
SMSA-8250R10-M12	0	25	1	25	43	24	M12	20	22	8	JC8015
SMSA-8250R20-M12	0	25	2	25	43	24	M12	20	22	8	
SMSA-6250R30-M12	0	25	3	25	43	24	M12	20	22	6	
SMSA-8300R10-M16	0	30	1	30	56	29	M16	25	27	8	
SMSA-8300R20-M16	0	30	2	30	56	29	M16	25	27	8	
SMSA-6300R30-M16	0	30	3	30	56	29	M16	25	27	6	
SMSA-8320R10-M16	0	32	1	32	56	30	M16	25	27	8	
SMSA-8320R20-M16	0	32	2	32	56	30	M16	25	27	8	
SMSA-6320R30-M16	0	32	3	32	56	30	M16	25	27	6	

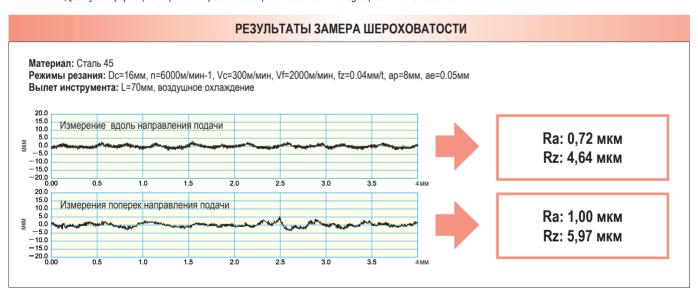

ullet складская программа; \circ производственная программа; \Box изготавливается под заказ

Корпуса поставляются без пластин

Рекомендации по выбору режимов резания

Обработка уступов периферией фрезерной головки серии SMSA

Обрабатываемый материал	Твердость	Vс, м/мин	Fz, мм/зуб
Углеродистые и легированные стали	менее 250НВ	160-190	0,02-0,03
Нержавеющие стали	менее 255НВ	160-190	0,02-0,03
Штамповые стали	30-43 HRC	120-125	0,025
Жаропрочные сплавы	35-43HRC	30-40	0,025-0,03
Титановые сплавы	35-43HRC	80-95	0,023-0,03
Алюминиевы сплавы	50-110HB	225-300	0,027



Обработка плоскости торцем фрезерной головки серии SMSA

Обрабатываемый материал	Твердость	Vс, м/мин	Fz, мм/зуб
Углеродистые и легированные стали	менее 250НВ	160-190	0,1-0,14
Нержавеющие стали	менее 255НВ	160-190	0,1
Штамповые стали	30-43 HRC	120-125	0,1
Жаропрочные сплавы	35-43HRC	30-40	0,1
Титановые сплавы	35-43HRC	80-95	0,1
Алюминиевы сплавы	50-110HB	240-285	0,1

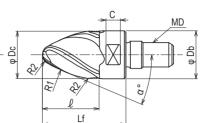
^{1.} В случае чистовой обработки стенок периферией фрезы, с целью повышения эффективности обработки, рекомендуем увеличить Ар и уменьшить Ае, что оптимизирует теплоотвод из зоны резания.

Окончательные режимы резания определяются в конкретных условиях, в зависимости от жесткости технологической системы. Более подробную информацию по режимам резания смотрите на сайте www.s-t-group.com в каталоге DIJET.

^{2.} В случае чистовой обработки плоскости торцем фрезы, с целью повышения эффективности обработки, уменьшить Ар и увеличить подачу.

^{3.} Рекомендуется использование внутреннего подвода СОЖ с целью снижения температуры обработки и избежания проблем с наростообразованием на режущей кромке.

ullet складская программа; \circ производственная программа; \Box изготавливается под заказ



Серия S-Head

Монолитные сменные головки / Тип STLP Ø 16-20 мм

- ✓ 4 зуба / Угол винтовой канавки 30°
- ✓ Лучший выбор для 5-ти осевой обработки
- ✓ Высокая производительность при построчном фрезеровании наклонных стенок, за счет большого шага строки
- Оптимально при изготовлении формообразующих прессформ, лопаток, турбин и моноколес.

Обозначение		Dc,	I, MM	Lf,	R1, мм	R2, мм	α°, MM	Db, мм	MD,	С,	W,	Z	Сплав	Момент затяжки, Нм	Ключ
STLP4160T20R4-M8	0	16	14,3	26	1500	4	20°	51	M8	5,5	14	4	DH115	10~11	DS-14
STLP4200T20R5-M10	0	20	17,9	30	1500	5	20°	19	M10	5,5	17	4	פווחט	10~16	DS-17

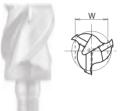
Допуск на изготовление радиусов +/-0,01 мм.

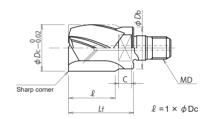
Сплав DH115 с PVD покрытием позволяет фрезеровать труднообрабатываемые сплавы и закаленные стали.

Серия S-Head

Монолитные сменные головки / Тип SMAL Ø 18-28

- √ 3 зуба / угол винтовой канавки 45°
- ✓ Передний угол 20° и внутренняя подача СОЖ на режущую кромку обеспечивают высокоточную обработку
- ✓ Длина режущей кромки 1D
- Увеличенный диаметр рабочей части по отношеню к хвостовику позволяет обрабатывать вдоль высоких стенок





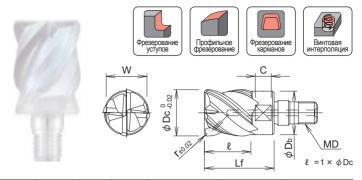
Обозначение		Dс, мм	I, MM	Lf, мм	Db, мм	MD	С	w	Z	Сплав	Ключ	Момент затяжки, Нм
SMAL-3180-M8	0	18	18	26	15	M8	5,5	14	3		DS-14	10~11
SMAL-3200-M10	0	20	20	28	18	M10	5,5	14	3		DS-14	10~16
SMAL-3220-M10	0	22	22	31	19	M10	6,5	17	3	FZ15	DS-17	10~16
SMAL-3250-M12	0	25	25	35	23	M12	5,5	19	3		DS-19	15~20
SMAL-3280-M12	0	28	28	38	24	M12	5,5	22	3		DS-22	15~20

Рекомендации по выбору режимов резания

Обработка уступов

		Гпу	бина					Диаме	тр, мм				
Обрабатываемый материал	Сплав		ания	Ø	18	Ø	20	Ø	22	ø	25	ø	28
Оораоатываемыи материал	Сплав	Ар, мм	Ае, мм	n, об/мин	F, мм/мин								
Aluminium alloy (A5052)				3200	800	2800	700	2600	650	2300	570	2050	510
Aluminium alloy (A7075)	FZ15	10	0.050	2600	650	2400	600	2100	520	1900	470	1700	420
Cast aluminium alloy (Up to 13% Si)	FZIS	1D	0,05D	3200	800	2800	700	2600	650	2300	570	2050	510
Copper alloy (C1100)				1800	450	1600	400	1400	350	1300	320	1150	280

Более полные рекомендации по применяемости режимов резания см. каталог Dijet



Серия S-Head

Монолитные сменные головки / Тип SMSR Ø 16-32

- ✓ 4 зуба / угол винтовой канавки 42-45°
- ✓ Неравномерный шаг зубьев
- Положительный пердний угол и внутренняя подача СОЖ улучшает стружкоотвод и уменьшает налипание стружки
- ✓ Новый сплав DH115 с PVD покрытием рекомедуется для обработки углеродистых и штамповых сталей, а также нержавеющих сталей, жаропрочных и титановых сплавов

Обозначение		r, MM	Dc,	I, мм	Lf,	Db,	MD	С	W	Z	Сплав	Ключ	Момент затяжки, Нм
SMSR-4160R05-M8	0	0,5											
SMSR-4160R10-M8	0	1,0	16	16	24	15	M8	5,5	14			DS-14	10~11
SMSR-4160R20-M8	0	2,0	10	10	24	15	IVIO	5,5	14			D3-14	10~11
SMSR-4160R30-M8	0	3,0											
SMSR-4200R05-M10	0	0,5											
SMSR-4200R10-M10	0	1,0	20	20	29	19	M10	5,5	17			DS-17	10~16
SMSR-4200R20-M10	0	2,0	20	20	29	19	IVITO	5,5	17			D9-17	10~10
SMSR-4200R30-M10	0	3,0											
SMSR-4250R10-M12	0	1,0								4	DH115		
SMSR-4250R20-M12	0	2,0	25	25	35	24	M12	5,5	22			DS-22	15~20
SMSR-4250R30-M12	0	3,0											
SMSR-4300R10-M16	0	1,0											
SMSR-4300R20-M16	0	2,0	30	30	44	29	M16	5,5	27			DS-27	20~25
SMSR-4300R20-M16	0	3,0											
SMSR-4320R10-M16	0	1,0											
SMSR-4320R20-M16	0	2,0	32	32	46	30	M16	5,5	27			DS-27	20~25
SMSR-4320R30-M16	0	3,0											

Рекомендации по выбору режимов резания

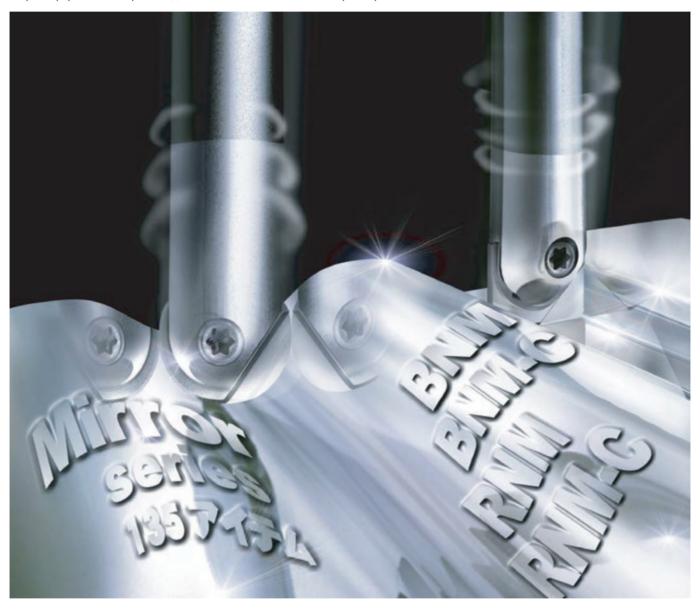
Обработка уступов

		Глу	бина					Диаме	тр, мм				
Обрабатываемый материал	Сплав		пия	Ø	16	ø	20	Ø	25	ø	30	ø	32
Оораоатываемый материал	СПЛАВ	Ар, мм	Ае, мм	n, об/мин	Vf, мм/мин	n, об/мин	F, мм/мин	n, об/мин	F, мм/мин	n, об/мин	F, мм/мин	n, об/мин	F, мм/мин
Carbon steel (C50, C55) below 250HB			0,1	2980	1430	2390	1150	1910	920	1590	760	1490	720
Mold steel (1.2311,P20), 30-43HRC			0,1	2390	1150	1910	920	1530	730	1270	610	1190	610
Hardened die steel (1.2344,1.2379), 42-52HRC	DUMAE	0.0	0,05	1390	670	1110	540	890	430	740	360	700	330
Stainless steel, Below 250HB	DH115	0,8	0,1	1990	960	1590	760	1270	610	1060	510	1000	480
Titanium alloy (Ti-6Al-4V)			0,05	1590	640	1270	510	1020	410	850	340	800	320
Inconel (Inco718)			0,1	1000	200	800	160	640	130	530	110	500	100

Более полные рекомендации по применяемости режимов резания см. каталог Dijet

Mirror Ball

Mirror Radius



Чистовые сборные фрезы «Mirror Ball» и «Mirror Radius».

Основное назначение: высокоточная чистовая фрезерная обработка, в том числе, по технологии **«high speed cutting»** - высокоскоростное резание. Оптимальная область применения - обработка формообразующих поверхностей штампов и пресс-форм как в «сыром» виде, так и после окончательной термообработки.

Описание процесса «high speed cutting» - высокоскоростное резание.

По сравнению с обычным резанием, данный процесс позволяет увеличить эффективность, точность и качество механообработки. Сутью данной технологии является то, что при достижении определенных скоростей резания в несколько раз выше, чем при обычной механообработке, теплопередача от стружки к инструменту начинает уменьшаться, и это делает возможной обработку заготовок на более высоких скоростях. При этом, основное тепло, выделяемое при резании, уходит в стружку, а заготовка и инструмент не успевают нагреваться. Данный эффект особенно важен для обработки жаропрочных материалов, а также позволяет производить фрезерование закаленных сталей, не опасаясь «отпуска». Главными показателями высокоскоростного резания является малое сечение стружки, снимаемое с высокой скоростью резания. Наиболее эффективно применение данной технологии для выполнения чистовых высокоточных операций и обработки тонкостенных заготовок.

ullet складская программа; \circ производственная программа; llot изготавливается под заказ

Mirror Ball и Mirror S

Фрезы «Mirror Ball» (диапазон Ø6-32 мм.), оснащённые радиусными пластинами.

Применение - Чистовая обработка сложных криволинейных контуров, карманов и т.п. методом построчного фрезерования с малыми глубиной и шириной фрезерования.

Особенности и преимущества:

- При использовании твердосплавного корпуса жесткость аналогична жесткости монолитной фрезы того же диаметра.
- При жесткой технологической системе достигается высокое и стабильное качество обработанной поверхности (Ra=0,5-0.63)
- Благодаря высокой жесткости твердосплавного корпуса возможна обработка с большим вылетом инструмента без вибраций.
- Обработка всех основных групп материалов, включая закаленные стали.
- Высокоточное исполнение рабочих и посадочных поверхностей режущих пластин, гарантирует точность и качество обработки не хуже, чем у монолитных твердосплавных фрез.

Высокоточные фрезы со сменными пластинами серии Mirror Ball для чистовой обработки

Высокая точность:

Допуск на радиус пластины, установленной на фрезу менее \pm 0.010 мм (менее \pm 0.006 мм на пластину отдельно от корпуса фрезы). Это обеспечивает такую же высокую точность обработки, как обработка монолитными твердосплавными радиусными фрезами.

Стоимость обработки:

Чистовая обработка фрезами Mirror Ball может заменить чистовую обработку концевыми монолитными радиусными фрезами. Применение экономичных сменных пластин значительно снижает стоимость инструмента для обработки деталей на чистовых операциях.

Радиусные сменные пластины с острой режущей кромкой

Сменные твердосплавные пластины круглой формы уменьшают риск возникновения вибраций при фрезеровании вдоль стенки и обеспечивают мягкое резание при фрезеровании сложных поверхностей для высокопроизводительной копировальной обработки.

Пластины серии Mirror-S

Сменные твердосплавные пластины Mirror-S для высокопроизводительной обработки закалённых материалов. Позитивная геометрия пластин обеспечивает более мягкое резание.

Высокоточное крепление пластин

Высокое усилие зажима и точность крепления пластин с помощью одного высокоточного крепежного винта обеспечивают отличную повторяемость и жесткость установки пластин в корпусе фрезы.

Покрытие DZ / DV / DH

Покрытие DZ (TiAlN), DV (AlTiCrN) и DH (AlCrN/AlTiCrN/TiSiN), нанесённые методом PVD, позволяют достичь максимальной стойкости инструмента при высокопроизводительной обработке на чистовых операциях

Твердосплавный корпус фрезы

Использование твердосплавного корпуса фрезы или твердосплавной оправки для сменных фрезерных головок позволяет достичь максимальной жесткости, высочайшей точности при высокопроизводительной обработке на чистовых операциях.

ullet складская программа; \circ производственная программа; \Box изготавливается под заказ

Высокоточные радиусные фрезы со сменными пластинами для чистовой обработки (Ø 6-32 мм)

- ✓ Высокая точность. Допуск на радиус пластины, установленной на фрезу менее 0,010 мм и обеспечивает такую же высокую точность обработки, как обработка монолитными твердосплавными радиусными фрезами.
- Стоимость обработки. Чистовая обработка фрезами Mirror Ball может заменить чистовую обработку концевыми монолитными радиусными фрезами. Применение сменных пластин значительно снижает расходы на инструмент.

Концевые фрезы со стальным корпусом

 β^* - минимально возможный угол отклонения от вертикали при периферийном фрезеровании

												Плас	тина		
Обозначение		Рис.	D, мм	R, MM	L, MM	d ₁ , мм	I ₁ , мм	L ₂ , MM	d, мм	α	β	0	0	Винт	Ключ
BNMS-160032S-S16	0	2		8	92	14	32	-	16	-	-				
BNMM-160063S-S16	0	2	16	8	123	14	63	-	16	-	-	BNM-160	RNM-160	FSW-4013	A-15
BNMM-160063T-S16	0	1] 10	8	123	14	63	28	16	1°30'	-	DIVIVI-100	GRM-160	1300-4013	A-13
BNML-160100T-S20	0	1		8	166	14	100	28	20	1°30'	1°13'				
BNMS-200038S-S20	0	2		10	104	17	38	-	20	-	-				
BNMM-200075S-S20	0	2	20	10	141	17	75	-	20	-	-	BNM-200	RNM-200	FSW-5016	A-20W
BNMM-200075T-S20	0	1	20	10	141	17	75	34	20	2°	-	DINIVI-200	GRM-200	F3W-5010	A-20VV
BNML-200115T-S25	0	1		10	191	17	115	34	25	1°50'	1°22'				
BNMS-250045S-S25	0	2		12,5	121	21	45	-	25	-	-				
BNMM-250090S-S25	0	2	25	12,5	166	21	90	-	25	-	-	BNM-250	RNM-250	FSW-6020	A-30
BNMM-250090T-S25	0	1	25	12,5	166	21	90	41	25	2°20'	-	DIVIVI-200	GRM-250	F3W-0020	A-30
BNML-250135T-S32	0	1		12,5	215	21	135	41	32	1°30'	1°38'				
BNMS-300053S-S30	0	2		15	133	26	53	-	30	-	-				
BNMM-3000106S-S30	0	2	30	15	186	26	106	-	30	-	-	BNM-300	RNM-300		
BNMM-3000106T-S32	0	1	30	15	186	26	106	49	32	3°	0°38'	DININI-200	GRM-300		
BNML-300160T-S32	0	1		15	240	26	160	49	32	1°10'	0°24'			FSW-8025	A-40
BNMS-320053S-S32	0	2		16	133	26	53	-	32	-	-			1 300-0025	A-40
BNMM-320106S-S32	0	2	32	16	186	26	106	-	32	-	-	DNIM 200	RNM-320		
BNMM-320106T-S32	0	1	32	16	186	26	106	49	32	3°	-	DINIVI-32U	KINIVI-320		
BNML-320160T-S32	0	1		16	240	26	160	49	32	1°10'	-				

В корпуса фрез Mirror Ball возможно устанавливать прямоугольные пластины Mirror Radius (стр. Б-98), при этом макс. глубина резания должна быть не более 1/40xD

Концевые фрезы с твердосплавным корпусом Ø 6-32 мм

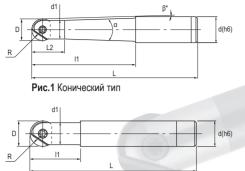
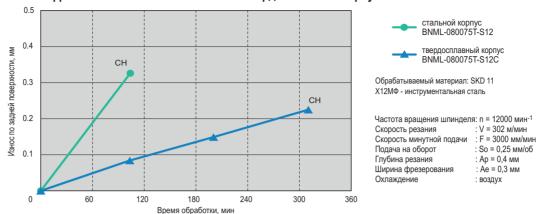


Рис.2 Цилиндрический тип

Преимущества использования чистовых фрез MIRROR BALL с твердосплавным корпусом:

- ✓ Применение твердосплавного корпуса инструмента позволяет достичь жёсткость, равной жёсткости монолитной твердосплавной фрезы того же диаметра.
- Стойкость инструмента с твердосплавным корпусом повышается вдвое по сравнению с инструментом со стальным хвостовиком.
- Фрезы с твердосплавными корпусом могут закрепляться в термоусадочные патроны (сборка с термовоздействием).

												Плас	стина		
Обозначение		Рис.	D, мм	R, MM	L, мм	d ₁ , мм	I ₁ , мм	L ₂ ,	d, мм	α	β	0	0	Винт	Ключ
BNMS-060017S-S06C	0	2		3	60	5,4	17	-	6	-	-				
BNMM-060035S-S06C	0	2	6	3	92	5,4	35	-	6	-	-	DNIM OGO	_	ECM 200ELL	A-06
BNML-060017S-S06C	0	2	0	3	120	5,4	17	-	6	-	-	BNM-060	-	FSW-2005H	A-06
BNMS-060030T-S10C	0	1		3	80	5,4	30	15	10	6°	4°14'				
BNMS-080025S-S08C	0	2		4	90	7,2	25	-	8	-	-				
BNMM-080035S-S08C	0	2		4	92	7,2	35	-	8	-	-				
BNML-080075S-S08C	0	2	8	4	140	7,2	75	-	8	-	-	BNM-080	RNM-080	FSW-2006H	A-07
BNML-080095S-S08C	0	2		4	160	7,2	95	-	8	-	-				
BNML-080075T-S12C	0	1		4	132	7,2	75	20	12	2°	1°37'				
BNMS-100030S-S10C	0	2		5	100	9	30	-	10	-	-				
BNMM-100043S-S10C	0	2		5	100	9	43	-	10	-	-				
BNML-100075S-S10C	0	2	10	5	140	9	75	-	10	-	-	DNIM 100	RNM-100	FSW-3007H	۸ ۸۸
BNML-100095S-S10C	0	2	10	5	160	9	95	-	10	-	-	BINIVI- 100	KINIVI- 100	F3VV-3007FI	A-08
BNML-100140S-S10C	0	2		5	220	9	140	-	10	-	-				
BNML-100075T-S12	0	1		5	132	9	75	23	12	1°30'	0°49'				
BNMS-120028S-S12C	0	2		6	83	11	28	-	12	-	-				
BNMM-120053S-S12C	0	2		6	110	11	53	-	12	-	-				
BNML-120095S-S12C	0	2	12	6	160	11	95	-	12	-	-	BNM-120	RNM-120	FSW-3509	A-10
BNML-120150S-S12C	0	2		6	220	11	150	-	12	-	-				
BNML-120085T-S16C	0	1		6	145	10	85	27	12	2°30'	1°27'				
BNMS-160033S-S16C	0	2		8	92	15	33	-	16	-	-				
BNML-160070S-S16C	0	2		8	140	15	70	-	16	-	-				
BNML-160090S-S16C	0	2		8	160	15	90	-	16	-	-				
BNML-160110S-S16C	0	2	16	8	180	15	110	-	16	-	-	BNM-160	RNM-160 GRM-160	FSW-4013	A-15
BNML-160150S-S16C	0	2		8	220	15	150	-	16	-	-		Oran 100		
BNMM-160063T-S20C	0	1		8	123	14	63	30,5	20	4°	2°05'				
BNML-160100T-S20C	0	1		8	166	14	100	30,5	20	2°	1°15'				
BNMS-200039S-S20C	0	2		10	104	19	39	-	20	-	-				
BNMM-200075S-S20C	0	2		10	141	19	75	-	20	-	-				
BNML-200105S-S20C	0	2	20	10	180	19	105	-	20	-	-	DVIV 200	RNM-200	FSW-5016	A-20W
BNML-200125S-S20C	0	2	20	10	200	19	125	-	20	-	-	BNM-200	GRM-200	F3VV-3010	A-20VV
BNML-200170S-S20C	0	2		10	250	19	170	-	20	-	-				
BNML-200115T-S25C	0	1		10	191	17	115	36	25	2°	1°22'				
BNMM-250090S-S25C	0	2	25	12,5	166	24	90	-	25	-	-	DNIM OFO	RNM-250	FSW-8025	۸ 40
BNML-250140S-S25C	0	2	25	12,5	220	24	140	-	25	-	-	BNM-250	GRM-250	F3VV-0U23	A-40


[•] складская программа; ○ производственная программа; □ изготавливается под заказ

Сравнение фрез MIRROR BALL со стальным и твердосплавным корпусом

Сменные головки (Ø 10-32 мм)

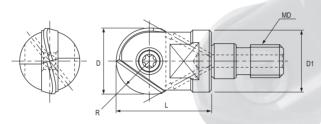
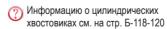



Рис.1 Внутренний подвод СОЖ

								Плас	тина		
Обозначение		D, мм	R, мм	L, MM	D ₁ , мм	MD, MM	Момент затяжки, Нм	0	0	Винт	Ключ
MBX-100-M6	0	10	5	18	9,7	M6	8	BNM-100	-	FSW-3007H	A-08
MBX-120-M6	0	12	6	20	11,5	M6	0	BNM-120	-	FSW-3509	A-10
MBX-160-M8	0	16	8	23	15	M8	16	BNM-160	GRM-160	FSW-4013	A-15
MBX-200-M10	0	20	10	30	18,5	M10	10	BNM-200	GRM-200	FSW-5016	A-20W
MBX-250-M12	0	25	12,5	35	24	M12	20	BNM-250	GRM-250	FSW-6020	A-30
MBX-300-M16	0	30	15	43	29	M16	25	BNM-300	GRM-300	FSW-8025	A-40
MBX-320-M16	0	32	16	43	29	M16	6	BNM-320	-	F3VV-0U25	A-40

Информацию об оправках для фрезерных головок см. в разделе Е.

Пластины режущие

Сменные твердосплавные пластины с полным радиусом уменьшают риск возникновения вибраций при фрезеровании вдоль стенки и обеспечивают мягкое резание при фрезеровании сложных поверхностей.

Обозначение	A,	R,	В,	T,	Момент затяжки,	С покр	ытием	Алмазное покрытие	Без покрытия
					Нм	DH103	DH111	JC10000	KT9
BNM-060	6	3	5	2	0,5	0	0	0	0
BNM-080	8	4	7	2,4	0,9	0	0	0	0
BNM-100	10	5	8,5	2,6	1,2	0	0	0	0
BNM-120	12	6	10	3	2	0	0	0	0
BNM-160	16	8	12	4	3	0	0	0	0
BNM-200	20	10	15	5	4	0	0	0	0
BNM-250	25	12,5	18,5	6	5	0	0	-	0
BNM-300	30	15	22,5	7	6	0	0	-	0
BNM-320	32	16	23,5	7	6	0	0	-	0

По запросу доступны пластины с CBN (JBN245)

Сплав DH111 взамен сплава JC5015

Информацию о сплавах см. стр. Б-121-123

Пластины серии Mirror-S.

Сменные твердосплавные пластины Mirror-S

для высокоскоростной обработки сталей.

BNM-S (SS) имеет положительную геометрию, что обеспечивает более мягкое резание.

BNM-TG имеет усиленную режущую кромку с отрицательным передним углом для обработки закалённых сплавов.

S-образная заточка режущей кромки в сочетании с новым покрытием DH102 обладает высокой термостойкостью и твердостью. Первый выбор для обработки закаленной стали

Обозначение	A,	R,	В,	С,	Т,	Момент затяжки,	С покр	оытием	Без покрытия	Для чистовой и получистовой обработки
						Нм	DH102	DH108	FZ05	
BNM-060-S	6	3	5	-	2	0,5	-	-	0	
BNM-080-S	8	4	7	0,5	2,4	0,9	-	-	0	
BNM-100-S	10	5	8.5	1	2,6	1,2	-	-	0	
BNM-120-S	12	6	10	1	3	2	-	-	0	
BNM-160-S	16	8	12	1	4	3	-	-	0	
BNM-200-S	20	10	15	1	5	4	-	-	0	
BNM-250-S	25	12,5	18,5	1	6	5	-	-	0	
BNM-300-S	30	15	22,5	1	7	6	-	-	0	
BNM-320-S	32	16	23,5	1	7	6	-	-	0	
BNM-060-SS	6	3	5	-	2	0,5	-	0	-	
BNM-080-SS	8	4	7	0,5	2,4	0,9	-	0	-	
BNM-100-SS	10	5	8,5	1	2,6	1,2	-	0	-	
BNM-120-SS	12	6	10	1	3	2	-	0	-	-S, TG
BNM-160-SS	16	8	12	1	4	3	-	0	-	5,12
BNM-200-SS	20	10	15	1	5	4	-	0	-	
BNM-250-SS	25	12,5	18,5	1	6	5	-	0	-	
BNM-300-SS	30	15	22,5	1	7	6	-	0	-	
BNM-320-SS	32	16	23,5	1	7	6	-	0	-	in
BNM-060-TG	6	3	5	-	2	0,5	0	-	-	
BNM-080-TG	8	4	7	0,5	2,4	0,9	0	-	-	T R±0.006
BNM-100-TG	10	5	8,5	1	2,6	1,2	0	-	-	
BNM-120-TG	12	6	10	1,5	3	2	0	-	-	
BNM-160-TG	16	8	12	1,5	4	3	0	-	-	
BNM-200-TG	20	10	15	2	5	4	0	-	-	
BNM-250-TG	25	12,5	18,5	2	6	5	0	-	-	
BNM-300-TG	30	15	22,5	2	7	6	0	-	-	
BNM-320-TG	32	16	23,5	2	7	6	0	-	-	

• складская программа; о производственная программа; изготавливается под заказ

Пластины режущие

- ✓ Сменные твердосплавные пластины с более высокой износостойкостью чем у сферической фрезы с таким же радиусом, пониженной вибрацией, а текже большей подачей, что улучшает производительность обработки;
- ✓ Возможность высокоточной и высокопроизводительной обработки даже в случае использования станка с низкой скоростью резания;
- ✓ Сплав DH102 с новым PVD покрытием подходит для закаленных материалов, а сплав JC8015 с PVD покрытием для обычной стали.

Обозначение	Dc,	r,	В,	C,	T,	Момент затяж-	С покр	ытием	Для чистовой обработки
						ки, Нм	JC8015	DH102	(1)
GRM-160-R50	16	5	12	1,1	4	0,5	0	0	
GRM-200-R60	20	6	15	1,7	5	0,9	0	0	c c
GRM-250-R80	25	8	18,5	2	6	1,2	0	0	ФРС=Д0.010
GRM-300-R100	30	10	22,5	2,5	7	2	0	0	r±0.012 1° B

По запросу доступны пластины с CBN (JBN245)

Рекомендации по монтажу пластин

- 1. Тщательно протрите гнездо под пластину;
- 2. Протрите саму пластину, особенно обратите внимание на отверстие и опорные поверхности;
- 3. Замените крепежный винт в случае появления первых признаков износа резьбы (частота замены примерно 10-15 пластин).

Рекомендации по монтажу фрезерных головок

- Тщательно протрите посадочные поверхности фрезерной головки и твердосплавной оправки;
- 2. Убедитесь, что после монтажа не осталось зазора между фрезерной головкой и твердосплавной оправкой;

ullet складская программа; \circ производственная программа; \Box изготавливается под заказ

Рекомендации по выбору режимов резания

Базовые режимы резания

Для концевых фрез со стальным корпусом*

							Пода	ча Ѕо, м	им/об.					
Обрабатываемый материал	Твердость	Сплав	Vс, м/мин			Ді	иаметр	инстру	мента, м	им			тах Ар, мм	max Ae,
			,	6	8	10	12	16	20	25	30	32]	
Серые чугуны (Сч25,Сч30)	160-260HB	DH103 DH111	200-400	0,2	0,3	0,4	0,5	0,6	0,6	0,7	0,7	0,7	D/10	D/10
Высокопрочные чугуны (Вч60-2, Вч79-2)	170-300HB	DH103 DH111	150-350	0,2	0,3	0,4	0,5	0,6	0,6	0,7	0,7	0,7	D/15	D/15
Углеродистые стали (сталь 50)	180-280HB	DH103 DH111	180-230	0,2	0,3	0,4	0,4	0,5	0,5	0,6	0,6	0,6	D/15	D/15
Низколегированная сталь (40XH2MA)	180-280HB	DH103 DH111	150-200	0,2	0,3	0,4	0,4	0,5	0,5	0,6	0,6	0,6	D/15	D/15
Штамповые стали (40ХГМА)	280-400HB	DH103 DH111	110-170	0,15	0,25	0,3	0,4	0,4	0,4	0,5	0,5	0,5	D/20	D/20
Инстр. и высоколегированные стали (4X5МФ1С, 1.2379)	180-225HB	DH103 DH111	130-180	0,15	0,25	0,3	0,4	0,5	0,5	0,6	0,6	0,6	D/20	D/20
Закаленные штамповые стали (4X5MФ1C, 1.2379)	40-55HRC	DH103 DH111	70-90	0,15	0,25	0,3	0,4	0,5	0,5	0,6	0,6	0,6	D/30	D/30
Нержавеющие стали (08X18H10, 1.4401)	150-250HB	DH103 DH111	90-130	0,15	0,25	0,3	0,4	0,4	0,4	0,5	0,5	0,5	D/20	D/20
Медные сплавы	80-150HB	KT9	150-200	0,25	0,4	0,5	0,7	0,7	0,7	0,8	0,8	0,8	D/10	D/10
Алюминиевые сплавы	30-100HB	КТ9	200-300	0,25	0,4	0,5	0,7	0,7	0,7	0,8	0,8	0,8	D/6	D/6
Графит	-	JC 10000	200-400	0,3	0,5	0,6	0,8	0,8	0,8	0,9	0,9	0,9	D/5	D/5

Для концевых фрез с твердосплавным корпусом*

							Пода	ча Ѕо, м	ім/об.					
Обрабатываемый материал	Твердость	Сплав	Vс, м/мин			Ді	иаметр	инструг	иента, к	им			тах Ар, мм	max Ae,
				6	8	10	12	16	20	25	30	32		
Серые чугуны (Сч25,Сч30)	160-260HB	DH103	400-500	0,4	0,5	0,5	0,6	0,8	0,8	1	1	1	0,1-0,3	D/40
Высокопрочные чугуны (Вч60-2, Вч79-2)	170-300HB	DH103	300-400	0,3	0,4	0,4	0,5	0,6	0,6	0,8	0,8	0,8	0,1-0,3	D/40
Углеродистые стали (сталь 50)	180-280HB	DH103	300-400	0,3	0,4	0,4	0,5	0,6	0,6	0,7	0,7	0,7	0,1-0,3	D/50
Низколегированная сталь (40XH2MA)	180-280HB	DH103	300-400	0,3	0,4	0,4	0,5	0,6	0,6	0,7	0,7	0,7	0,1-0,3	D/50
Штамповые стали (40ХГМА)	280-400HB	DH103	300-350	0,25	0,3	0,3	0,4	0,5	0,5	0,6	0,6	0,6	0,1-0,2	D/50
Инстр. и высоколегированные стали (4X5МФ1С, 1.2379)	180-225HB	DH103	300-350	0,25	0,3	0,3	0,4	0,4	0,4	0,6	0,6	0,6	0,1-0,2	D/50
Закаленные штамповые стали (4X5MФ1C, 1.2379)	40-55HRC	DH103	250-350	0,25	0,3	0,3	0,4	0,5	0,5	0,6	0,6	0,6	0,1-0,2	D/50
Закаленные штамповые стали (4X5MФ1C, 1.2379)	более 55HRC	DH103	150-250	0,2	0,25	0,3	0,4	0,5	0,5	0,6	0,6	0,6	0,1-0,2	D/50
Нержавеющие стали (08X18H10, 1.4401)	150-250HB	DH103	200-300	0,25	0,35	0,45	0,6	0,65	0,7	0,8	0,8	0,8	0,1-0,2	D/50
Медные сплавы	80-150HB	KT9	300-400	0,3	0,4	0,4	0,5	0,6	0,6	0,7	0,7	0,7	0,1-0,5	D/40
Алюминиевые сплавы	30-100HB	KT9	400-500	0,35	0,5	0,5	0,6	0,7	0,7	0,8	0,8	0,8	0,1-0,5	D/40
Графит	-	JC 10000	600-800	0,4	0,6	0,6	0,7	0,8	0,8	0,9	0,9	0,9	0,1-0,5	D/40

^{*} Данные режимы резания рекомендованы для короткой и средней серии фрез (диаметром более 12 мм)

[•] складская программа; ○ производственная программа; □ изготавливается под заказ

Поправочные коэффициенты в зависимости от вылета инструмента

		Коротка	я серия			Средня	я серия			Длинна	я серия	
Диаметр обработки, мм			Коэфф	ициент			Коэфф	ициент			Коэфф	ициент
диаметр обработки, мм	I ₁ , мм	I ₁ /D, MM	Vс, м/мин	So, мм/об	I ₁ , мм	I ₁ /D, MM	Vс, м/мин	So, мм/об	I ₁ , мм	I ₁ /D, мм	Vс, м/мин	So, мм/об
6	30	5	1	1	35	5,8	1	1	-	-	-	-
8	35	4,4	1	1	53	6,6	0,6	0,65	75	9,4	0,5	0,5
10	35	3,5	1	1	53	5,3	0,7	0,8	75	7,5	0,6	0,65
12	26	2,2	1	1	53	4,4	0,9	0,9	85	7,1	0,65	0,65
16	32	2	1	1	63	3,9	1	1	100	6,3	0,7	0,7
20	38	1,9	1	1	75	3,8	1	1	115	5,8	0,75	0,75
25	45	1,8	1	1	90	3,6	1	1	135	5,4	0,8	0,8
30	53	1,8	1	1	106	3,5	1	1	160	5,3	0,8	0,9
32	53	1,7	1	1	106	3,3	1	1	160	5	0,8	0,9

^{*} В таблице приведены поправочные коэффициенты для скорости резания V и подачи So. На данные коэффициенты необходимо умножить полученные из таблиц значения скорости резания и подачи. Данные рекомендации должны быть обязательно соблюдены.

11 - рабочая длина фрезы

Для сменных головок MBN с твердосплавными оправками

Обрабатываемый материал	Твердость	Сплав	Vc, м/мин	So, мм/об	тах Ар, мм	тах Ае, мм
Серые чугуны (Сч25,Сч30)	160-260HB	DH103 DH111	450	0,15	0,02D	0,025D
Высокопрочные чугуны(Вч60-2, Вч79-2)	170-300HB	DH103 DH111	350	0,15	0,02D	0,025D
Углеродистые стали (сталь 50)	180-280HB	DH103 DH111	350	0,15	0,02D	0,02D
Низколегированная сталь (40ХН2МА)	180-280HB	DH103 DH111	350	0,15	0,02D	0,02D
Инстр. и высоколегир. стали (4Х5МФ1С, 1.2379)	180-225HB	DH103 DH111	350	0,15	0,02D	0,02D
Закаленные штамповые стали (4Х5МФ1С, 1.2379)	40-55HRC	DH103 DH111	250	0,12	0,015D	0,02D
Закаленные штамповые стали (4Х5МФ1С, 1.2379)	более 55HRC	DH103 DH111	200	0,1	0,01D	0,02D
Нержавеющие стали (08Х18Н10, 1.4401)	150-250HB	DH103 DH111	300	0,15	0,02D	0,02D
Медные сплавы	80-150HB	JC 10000 FZ05 KT9	350	0,17	0,02D	0,025D
Алюминиевые сплавы	30-100HB	JC 10000 FZ05 KT9	500	0,2	0,03D	0,03D

Для сменных головок MBN с твердосплавными оправками по технологии «high speed cutting» - высокоскоростное резание

Обрабатываемый материал	Твердость	Сплав	Vc, м/мин	So, мм/об	тах Ар, мм	тах Ае, мм
Серые чугуны (Сч25,Сч30)	160-260HB	DH103 DH111	750	0,2	0,1-0,3	0,02D
Высокопрочные чугуны (Вч60-2, Вч79-2)	170-300HB	DH103 DH111	600	0,18	0,1-0,3	0,02D
Углеродистые стали (сталь 50)	180-280HB	DH103 DH111	600	0,18	0,1-0,3	0,02D
Низколегированная сталь (40ХН2МА)	180-280HB	DH103 DH111	600	0,18	0,1-0,2	0,015D
Инстр. и высоколегир. стали (4Х5МФ1С, 1.2379)	180-225HB	DH103 DH111	600	0,18	0,1-0,2	0,015D
Закаленные штамповые стали (4Х5МФ1С, 1.2379)	40-55HRC	DH103 DH111	450	0,15	0,1-0,2	0,015D
Закаленные штамповые стали (4Х5МФ1С, 1.2379)	более 55HRC	DH103 DH111	300	0,15	0,05-0,01	0,015D
Нержавеющие стали (08Х18Н10, 1.4401)	150-250HB	DH103 DH111	500	0,19	0,1-0,2	0,015D
Медные сплавы	80-150HB	FZ05 KT9	600	0,24	0,1-0,3	0,02D
Алюминиевые сплавы	30-100HB	FZ05 KT9	800	0,25	0,1-0,5	0,02D

ullet складская программа; \circ производственная программа; \Box изготавливается под заказ

Для фрез с пластинами Mirror S (-SS, -TG) и GRM

							Пода	ча Ѕо, м	ім/об.					_
Обрабатываемый материал	Твердость	Сплав	Vс, м/мин			Ді	иаметр	инструг	иента, к	им			тах Ар, мм	тах Ае, мм
				6	8	10	12	16	20	25	30	32		
Серые чугуны (Сч25,Сч30)	160-260HB	DH102 DH108	400-500	0,2-0,35	0,25-0,4	0,3-0,5	0,4-0,6	0,5-0,7	0,6-0,8	0,6-0,8	0,8-1,0	0,8-1,0	0,02D	0,025D
Высокопрочные чугуны (Вч60-2, Вч79-2)	170-300HB	DH102 DH108 JC8015	300-400	0,2-0,3	0,25-0,35	0,3-0,4	0,4-0,5	0,5-0,6	0,5-0,7	0,5-0,7	0,6-0,8	0,6-0,8	0,02D	0,025D
Углеродистые стали (сталь 50)	180-280HB	DH108 JC8015	300-400	0,2-0,3	0,25-0,35	0,3-0,4	0,4-0,5	0,5-0,6	0,5-0,7	0,5-0,7	0,6-0,8	0,6-0,8	0,02D	0,02D
Низколегированная сталь (40XH2MA)	180-280HB	DH108 JC8015	300-400	0,2-0,3	0,25-0,35	0,3-0,4	0,4-0,5	0,5-0,6	0,5-0,7	0,5-0,7	0,6-0,8	0,6-0,8	0,02D	0,02D
Штамповые стали (40ХГМА)	280-400HB	DH108 DH102	300-400	0,2-0,3	0,25-0,35	0,3-0,4	0,4-0,5	0,5-0,6	0,5-0,7	0,5-0,7	0,6-0,8	0,6-0,8	0,02D	0,02D
Инстр, и высоколегированные стали (4X5МФ1С, 1,2379)	180-225HB	DH108 JC8015	300-400	0,2-0,3	0,25-0,35	0,3-0,4	0,4-0,5	0,5-0,6	0,5-0,7	0,5-0,7	0,6-0,8	0,6-0,8	0,02D	0,02D
Закаленные штамповые стали (4X5МФ1С, 1,2379)	40-55HRC	DH108 DH102	200-300	0,15-0,25	0,2-0,3	0,25-0,3	0,3-0,4	0,4-0,5	0,4-0,5	0,4-0,6	0,4-0,7	0,4-0,7	0,015D	0,02D
Закаленные штамповые стали (4X5МФ1С, 1,2379)	более 55HRC	DH108 DH102	150-250	0,15-0,25	0,2-0,3	0,25-0,3	0,3-0,4	0,4-0,5	0,4-0,5	0,4-0,6	0,4-0,7	0,4-0,7	0,01D	0,02D
Нержавеющие стали (08X18H10, 1,4401)	150-250HB	DH102 DH108 JC8015	250-350	0,2-0,3	0,25-0,35	0,3-0,4	0,3-0,5	0,4-0,5	0,4-0,6	0,4-0,7	0,5-0,8	0,5-0,8	0,02D	0,02D
Медные сплавы	80-150HB	FZ 05	300-400	0,2-0,35	0,25-0,4	0,3-0,5	0,4-0,6	0,5-0,7	0,6-0,8	0,6-0,8	0,8-1,0	0,8-1,0	0,02D	0,025D
Алюминиевые сплавы	30-100HB	FZ 05	400-500	0,2-0,35	0,25-0,4	0,3-0,5	0,4-0,6	0,5-0,7	0,6-0,8	0,6-0,8	0,8-1,0	0,8-1,0	0,03D	0,03D
Графит	-	JC 10000	600-800	0,2-0,35	0,25-0,4	0,3-0,5	0,4-0,6	0,5-0,7	0,6-0,8	0,6-0,8	0,8-1,0	0,8-1,0	0,03D	0,03D

① Окончательные режимы резания определяются в конкретных условиях, в зависимости от жесткости технологической системы. Более подробную информацию по режимам резания смотрите на сайте www.s-t-group.com в каталоге DIJET.

Примеры использования чистовых фрез BNM

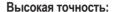
Применение чистовой фрезы BNM взамен монолитной твердосплавной фрезы

Чистовая - финишная		Наименование	Пресс-форма
14 4	Обрабатываемое изделие	Материал	SU S630 (нержавеющая сталь)
1700	7.0407.1.0	Твердость	35 HRC
S HI MO	Инотрумент	Корпус фрезы	BNMM-060035S-S06C
033/19	Инструмент	Пластины	BNM-060, JC5015
		Скорость резания	271 м/мин (14400 мин ⁻¹)
1		Минутная подача	2800 мм/мин (0,2 мм/об)
Результат	Условия	Глубина резания, Ар	Чистовая - 0,1 мм, финишная – 0,05 мм
Увеличение скорости резания более, чем на 20% по	обработки	Ширина фрезерования, Ае	0,1 мм
сравнению с монолитной твердосплавной фрезой. Кроме того, применение чистовой фрезы MIRROR BALL		Наличие СОТС	Масляный туман
позволило улучшить качество поверхности и уменьшить время ручных доводочных операции.		Станок	Высокоскоростной ОЦ

Высокие точность и качество обработки

Обеспечена требуемая шероховатость		Наименование	Деталь самолета
поверхности: менее Rz=6,3 мкм	Обрабатываемое изделие	Материал	Сталь 38ХМА
付	подолис	Твердость	40 HRC
	Инотрумент	Корпус фрезы	BNML-120095S-S12C
7	Инструмент	Пластины	BNM-120, JC5015
675/		Скорость резания	337 м/мин (10000 мин ⁻¹)
		Минутная подача	800 мм/мин (0,08 мм/об)
Результат	Условия	Глубина резания, Ар	0,2 мм
Обработка тонкостенной детали не вызвала	обработки	Ширина фрезерования, Ае	0,1 мм
проблем с фрезой MIRROR BALL.		Наличие СОТС	СОЖ на водной основе
Обеспечено отличное качество поверхности.		Станок	Высокоскоростной ОЦ

[•] складская программа; ○ производственная программа; □ изготавливается под заказ



Фрезы «Mirror Radius» (диапазон Ø8-32 мм.), оснащённые прямоугольными пластинами.

Применение - Чистовая обработка сложных криволинейных контуров, карманов и уступов, методом построчного фрезерования, с малыми глубиной и шириной фрезерования.

Применение пластин «High Feed Mirror Radius »HRM»

Позволяет работать по технологии (high feed) с высокой подачей, что позволяет значительно увеличить ширину фрезерования (ае) и, соответственно, добиться существенного сокращения времени обработки. Применение данной пластины подходит как для черновой, так и для чистовой обработки.

Высокоточная концевая фреза со сменными пластинами, имеющими две режущие кромки. Допуск на радиус при вершине пластины составляет ±10 мкм. Погрешность размера радиуса при переустановке пластины составляет 5 мкм.

- Высокая точность обработки и отличное качество поверхности с минимальным отжимом инструмента.
- Пластины имеют две радиальные режущие кромки и устанавливаются в корпус фрезы с высокой точностью.
- Высокое усилие зажима и точность крепления пластин с помощью одного прецизионного крепежного винта обеспечивают отличную повторяемость и жесткость установки пластин в корпусе фрезы.
- Пластины серии Mirror Radius могут быть установлены в корпуса для пластин серии Mirror Ball для обработки на чистовых операциях, глубина резания при этом не должна превышать 1/40xD.
- Пластины Mirror Radius для работы с большими подачами имеют позитивную геометрию, уменьшающую силы резания и вибрацию. Эти пластины применяются для черновых и получистовых операций.

Высокоточные цилиндрические концевые фрезы со сменными пластинами для чистовой обработки (Ø 8-32 мм)

- Высокоточная концевая фреза со сменными пластинами. Высокая точность обработки и отличное качество поверхности
- Допуск на радиус при вершине пластины составляет ±10 мкм. Погрешность размера радиуса при переустановке пластины составляет 5 мкм

Рис.1 Конический тип d (h6) Ap = 0.3-0.8D; Ae = 0.3-0.5D

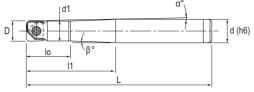
Концевые фрезы со стальным корпусом

Обозначение		Рис.	D, мм	L,	I ₀ , мм	I ₁ , мм	d ₁ , мм	d, мм	α	β	Пластина	Винт	Ключ	
RNMM-160070S-S16	0	2		140	-	70	15	16	-	-				
RNMM-160090S-S16	0	2	16	160	-	90	15	16	-	-	RNM-160/170	FSW-4013	A-15	
RNML-160100S-S16	0	2		200	-	100	15	16	-	-				
RNMM-200075S-S20	0	2		141	-	75	19	20	-	-				
RNMM-200105S-S20	0	2	20	180	-	105	19	20	-	-	RNM-200/210	FSW-5016	A-20W	
RNML-200125T-S20	0	2		250	-	125	19	20	-	-				
RNMM-250090S-S25	0	2		166	-	90	24	25	-	-				
RNMM-250140S-S25	0	2	25	220	-	140	24	25	-	-	RNM-250/260	FSW-6020	A-30	
RNML-250150S-S25	0	2		250	-	150	24	25	-	-				
RNMM-300106S-S32	0	2	20	186	-	106	29	32	-	-	DNIM 200			
RNMM-300140S-S32	0	2	30	220	-	140	29	32	-	-	RNM 300	EC/W 000E	A 40	
RNMM-320106S-S32	0	2	20	186	-	106	31	32	-	-	DNIM 200	FSW-8025	A-40	
RNMM-320140S-S32	0	2	32	220	-	140	31	32	-	-	RNM 320			

Рис.2 Цилиндрический тип

• складская программа; ○ производственная программа; □ изготавливается под заказ

Концевые фрезы с твердосплавным корпусом Ø 8-32 мм



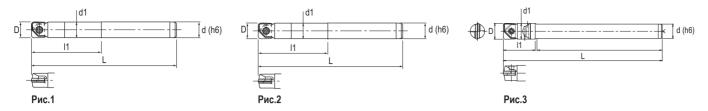
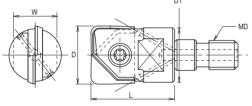
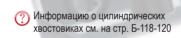

Рис.1 Конический тип

Рис.2 Цилиндрический тип

Обозначение		Рис.	D, мм	L,	I ₀ , мм	I ₁ , мм	d ₁ , мм	d, мм	α	β	Пластина	Винт	Ключ
RNMM-080053T-S12C	0	1	8	110	20	53	7,8	12	2°12'	2°	RNM-080	ECM 2006H	A 07
RNML-080075S-S08C	0	2	0	140	1	75	7,8	8	-	-	HRM-080/090 FRM-090-R	FSW-2006H	A-07
RNMM-100050S-S10C	0	2		110	-	50	9,8	10	-	-	DNM 400		
RNMM-100053T-S12C	0	1	10	110	22,5	53	9,8	12	1°07'	1°	RNM-100 HRM-100/110 FRM-100-R	FSW-3007H	A-08
RNML-100075S-S10C	0	2		140	-	75	9,8	10	-	-			
RNMM-120053S-S12C	0	2	12	110	-	53	11,8	12	-	-	RNM-120/130 HRM-120/130	FSW-3509H	A-10
RNML-120095S-S12C	0	2	12	160	-	95	11,8	12	-	-	FRM-120-R	1 000 000011	7. 10
RNMM-160070S-S16C	0	2		140	-	70	15,8	16	-	-			
RNMM-160090S-S16C	0	2	16	160	-	90	15,8	16	-	-	RNM-160/170 HRM-160/170	FSW-4013	A-15
RNML-160120S-S16C	0	2		210	-	120	15,8	16	-	-	FRM-160/170-R		7. 10
RNML-160150S-S16C	0	2		220	-	150	15,8	16	-	-			
RNMM-200075S-S20C	0	2		141	-	75	19,8	20	-	-			
RNMM-200105S-S20C	0	2	20	180	-	105	19,8	20	-	-	RNM-200/210 HRM-200/220	FSW-5016	A-20W
RNML-200150T-S20C	0	2		220	-	150	19,8	20	-	-	FRM-200/210-R	1 011 0010	712077
RNML-200175T-S20C	0	2		250	-	170	19,8	20	-	-			
RNMM-250090S-S25C	0	2		166	-	90	24,8	25	-	-			
RNMM-250140S-S25C	0	2	25	220	-	140	24,8	25	-	-	RNM-250/260 FRM-250	FSW-6020	A-30
RNML-250190S-S25C	0	2		260	-	190	24,8	25	-	-			
RNMM-300106S-S32C	0	2	30	186	-	106	29,8	32	-	-	RNM-300		
RNMM-300140S-S32C	0	2	30	220	-	140	29,8	32	-	-	FRM-300	FSW-8025	A-40
RNMM-320106S-S32C	0	2	32	186	-	106	31,8	32	-	-	RNM-320 FRM-320	. 5.1. 5525	7, 10



Концевые фрезы с твердосплавным корпусом Ø 6-20 мм



Обозначение		Рис.	D, мм	L, MM	I ₁ , мм	d ₁ , мм	d, мм	Пластина	Винт	Ключ	
RNMS-060015U-S06C	0	1	6	60	15	5,7	6	RNM-060	FSW-2005H	A-06	
RNMM-060030U-S06C	0	2	0	80	30	5,7	6	HRM-060-R	F5VV-2005F1	A-00	
RNMS-080020U-S08C	0	1		70	20	7,6	8	5,44,000			
RNMM-080040U-S08C	0	2	8	90	40	7,6	8	RNM-080 HRM-080/090	FSW-2506H	A-07	
RNMU-080075S-S7.8C	0	3	°	75	25	7,8	7,8	FRM-080	F5VV-2000FI		
RNMU-080110S-S7.8C	0	3		110	25	7,8	7,8	11tw 666			
RNMS-100025U-S10C	0	1		75	25	9,5	10	5,11,400			
RNMM-100050U-S10C	0	2	10	100	50	9,5	10	RNM-100 HRM-100/110	FSW-3007H	A-08	
RNMU-100085S-S9.8C	0	3	10	85	27	9,8	9,8	FRM-100		A-00	
RNMU-100130S-S9.8C	0	3		130	27	9,8	9,8	11101100			
RNMS-120030U-S12C	0	1		80	30	11,5	12	D. W. 4004400			
RNMM-120060U-S12C	0	2	12	110	60	11,5	12	RNM-120/130 HRM-120/130	FSW-3509H	A-10	
RNMU-120110S-S11C	0	3	12	110	30	11,8	11	FRM-120	F3W-3309H	A-10	
RNMU-120160S-S11C	0	3		160	30	11,8	11	11111120			
RNMS-160035U-S16C	0	1		90	35	15,5	16	RNM-160/170			
RNMU-160120S-S15C	0	3	16	120	35	15,8	15	HRM-160/170	FSW-4013H	A-15	
RNMU-160170S-S15C	0	3		170	35	15,8	15	FRM-160/170			
RNMS-200040U-S20C	0	1		105	40	19,5	20	RNM-200/210			
RNMU-200140S-S18C	0	3	20	140	40	19,8	18	HRM-200/220	FSW-5016H	A-20W	
RNMU-200200S-S18C	0	3		200	40	19,8	18	FRM-200/210			

Сменные головки (**Ø** 10-32 мм)

Внутренний подвод СОЖ

Информацию об оправках для фрезерных головок см. в разделе E.

Обозначение		D, мм	L,	I ₁ ,	d ₁ , мм	d, mm	Размер под ключ (W)	Пластина	Винт	Ключ
MRX-100-M6	0	10	5	18	9,7	M6	8	RNM-100 HRM-100/110 FRM-100	FSW-3007H	A-08
MRX-120-M6	0	12	6	20	11,5	M6	0	RNM-120/130 HRM-120/130 FRM-120	FSW-3509H	A-10
MRX-160-M8	0	16	8	23	15	M8	12	RNM-160/170 HRM-160/170 FRM-160/170 KRM-160-R10-BR50	FSW-4013H	A-15
MRX-200-M10	0	20	10	30	19	M10	14	RNM-200/210 HRM-200/220 FRM-200/210 KRM-200-R10-BR60	FSW-5016H	A-20W
MRX-250-M12	0	25	12,5	35	24	M12	17	RNM-250/260 FRM-250	FSW-6020H	A-30
MRX-300-M16	0	30	15	43	29	M16	22	RNM-300 FRM-300	FOW 000FU	A 40
MRX-320-M16	0	32	16	43	30	M16	22	RNM-320 FRM-320	FSW-8025H	A-40

[•] складская программа; ○ производственная программа; □ изготавливается под заказ

Корпуса поставляются без пластин

Пластины режущие для работы с большими скоростями

- Отличное решение для замены монолитных фрез при чистовой обработке.
- Пластины имеют две радиальные режущие кромки и устанавливаются в корпус фрезы с высокой точностью. Высокое усилие зажима и точность крепления пластин с помощью одного прецизионного крепежного винта обеспечивают отличную повторяемость и жесткость установки пластин в корпусе фрезы.

Обозначение	A,	R, мм	В,	I,	Т, мм	Момент затяжки, Нм	С покр	ытием	Алмазное покрытие	Без покрытия	
							DH103	JC8015	JC10000	KT9	
RNM-060-R03		0,3	5	2	2	0,5	0	0			
RNM-060-R05	6	0,5	5	2	2	0,5	0	0			
RNM-060-R10		1	5	2	2	0,5	0	0			
RNM-080-R03		0,3	7	2,7	2,4	0,9	0	0		0	
RNM-080-R05	8	0,5	7	2,7	2,4	0,9	0	0	0	0	
RNM-080-R10		1	7	2,7	2,4	0,9	0	0	0	0	
RNM-100-R0		>0,1	8,5	3,3	2,6	1,2		0			
RNM-100-R03		0,3	8,5	3,3	2,6	1,2	0	0		0	
RNM-100-R05	10	0,5	8,5	3,3	2,6	1,2	0	0	0	0	
RNM-100-R10	10	1	8,5	3,3	2,6	1,2	O	0	0	0	
RNM-100-R15		1,5	8,5	3,3	2,6	1,2		0		0	
RNM-100-R20		2	8,5	3,3	2,6	1,2	0	0		0	
RNM-120-R0		>0,1	10	4	3	2		0			
RNM-120-R03		0,3	10	4	3	2	0	0		0	
RNM-120-R05	12	0,5	10	4	3	2	0	0	0	0	
RNM-120-R10	12	1	10	4	3	2	0	0	0	0	
RNM-120-R15		1,5	10	4	3	2	0	0		0	
RNM-120-R20		2	10	4	3	2	0	0		0	
RNM-130-R03		0,3	10	4	3	2		0			
RNM-130-R05	40	0,5	10	4	3	2		0			A-0.020
RNM-130-R10	13	1	10	4	3	2		0			
RNM-130-R20		2	10	4	3	2		0			T R±0.010 B
RNM-160-R0		>0,1	12	5,3	4	3		0			
RNM-160-R03		0,3	12	5,3	4	3	0	0		0	
RNM-160-R05	10	0,5	12	5,3	4	3	0	0		0	Длинная боковая
RNM-160-R10	16	1	12	5,3	4	3	0	0		0	выглаживающая кромка
RNM-160-R15		1,5	12	5,3	4	3	0	0		0	
RNM-160-R20		2	12	5,3	4	3	0	0		0	
RNM-170-R03		0,3	12	5,3	4	3		0			
RNM-170-R05	47	0,5	12	5,3	4	3		0			
RNM-170-R10	17	1	12	5,3	4	3		0			
RNM-170-R20		2	12	5,3	4	3		0			
RNM-200-R0		>0,1	15	6,7	5	4		0			
RNM-200-R03		0,3	15	6,7	5	4	0	0		0	
RNM-200-R05		0,5	15	6,7	5	4	0	0		0	
RNM-200-R10	20	1	15	6,7	5	4	0	0		0	
RNM-200-R15		1,5	15	6,7	5	4	0	0		0	
RNM-200-R20		2	15	6,7	5	4	0	0		0	
RNM-200-R30		3	15	6,7	5	4		0			

Пластины серии Mirror Radius могут быть установлены в корпуса для пластин серии Mirror Ball для обработки на чистовых операциях, глубина резания при этом не должна превышать 1/40xD. Информацию о сплавах см. стр. Б121-123

• складская программа; о производственная программа; изготавливается под заказ 🕕 Корпуса поставляются без пластин

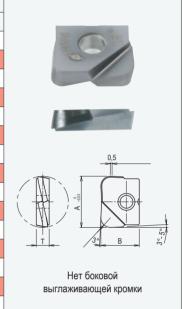
Обозначение	A,	R, мм	В,	I,	Т, мм	Момент за- тяжки, Нм	С покр	ытием	Алмазное покрытие	Без покрытия	
						,	DH103	JC8015	JC10000	KT9	
RNM-210-R03		0,3	15	6,7	5	4		0			
RNM-210-R05	21	0,5	15	6,7	5	4		0			
RNM-210-R10		1	15	6,7	5	4		0			
RNM-210-R20		2	15	6,7	5	4		0			
RNM-250-R0		>0,1	18,5	8,3	6	5		0			
RNM-250-R03		0,3	18,5	8,3	6	5	0	0			
RNM-250-R05		0,5	18,5	8,3	6	5	0	0			1/2°
RNM-250-R10	25	1	18,5	8,3	6	5	0	0			T R±0.010 B
RNM-250-R15		1,5	18,5	8,3	6	5	0	0			
RNM-250-R20		2	18,5	8,3	6	5	0	0			Длинная боковая
RNM-250-R30		3	18,5	8,3	6	5		0			выглаживающая кромка
RNM-260-R03		0,3	18,5	8,3	6	5		0			
RNM-260-R05	26	0,5	18,5	8,3	6	5		0			
RNM-260-R10	20	1	18,5	8,3	6	5		0			
RNM-260-R20		2	18,5	8,3	6	5		0			
RNM-300-R03		0,3	22,5	10	7	6	0	0			
RNM-300-R05		0,5	22,5	10	7	6	0	0			
RNM-300-R10	30	1	22,5	10	7	6	0	0			
RNM-300-R15		1,5	22,5	10	7	6		0			
RNM-300-R20		2	22,5	10	7	6	0	0			
RNM-300-R30		3	22,5	10	7	6		0			
RNM-320-R03		0,3	23,5	10,7	7	6	0	0			
RNM-320-R05		0,5	23,5	10,7	7	6	0	0			
RNM-320-R10	32	1	23,5	10,7	7	6	0	0			
RNM-320-R15	02	1,5	23,5	10,7	7	6		0			
RNM-320-R20		2	23,5	10,7	7	6	0	0			
RNM-320-R30		3	23,5	10,7	7	6		0			

Информацию о сплавах см. стр. Б-121-123

Пример использования чистовых фрез Mirror Radius

Высокоскоростная прецизионная обработка

• складская программа; о производственная программа; 🛮 изготавливается под заказ 🕕 Корпуса поставляются без пластин



Пластины режущие для работы с большими подачами (HRM)

Черновая, получистовая обработка

 Пластины Mirror Radius для работы с большими подачами имеют позитивную геометрию, уменьшающую силы резания и вибрацию. Эти пластины применяются для черновых и получистовых операций.

Обозначение	Α,	R,	В,	T,	Момент	С покрытием
Обозначение	ММ	мм	ММ	ММ	затяжки, Нм	JC8015
HRM-060-R05		0,5	5	2	0,5	0
HRM-060-R10	6	1	5	2	0,5	0
HRM-060-R15		2	5	2	0,5	0
HRM-080-R20	8	2	7	2,4	0,9	0
HRM-090-R20	9	2	7	2,4	0,9	0
HRM-100-R20	10	2	8,5	2,6	1,2	0
HRM-110-R20	11	2	8,5	2,6	1,2	0
HRM-120-R20	12	2	10	3	2	0
HRM-130-R20	13	2	10	3	2	0
HRM-160-R20	16	2	12	4	3	0
HRM-160-R30	10	3	12	4	3	0
HRM-170-R30	17	3	12	4	3	0
HRM-200-R20	20	2	15	5	4	0
HRM-200-R30	20	3	15	5	4	0
HRM-220-R30	22	3	15	5	4	0

Информацию о сплавах см. стр. Б-122-124

MRN (Ø10, Ø12, Ø16, Ø20)

ОСОБЕННОСТИ КРЕПЛЕНИЯ ПЛАСТИН

Максимальный угол врезания

При использовании пластин серии HRM рекомендованно устанавливать пластины большего размера, как показано на рисунке, с целью увеличения бокового зазора для улучшения отвода стружки из зоны резания и предотвращения поломки корпуса фрезы

Пример использования чистовых фрез Mirror Radius

Обработка пазов фрезой High Feed Mirror Radius

Вылет инструмента 70 мм. Обработка паза в кармане		Наименование	Кондукторная плита сварочного робота
1.1.000000000	Обрабатываемое изделие	Материал	SS400
	иоделис	Твердость	Состояние поставки
A THE RESIDENCE OF THE PARTY OF	Инструмент	Корпус фрезы	RNMM-160070S-S16C
	инструмент	Пластины	HRM-160-R30 JC8015
		Скорость резания	126 м/мин (2500 мин ⁻¹)
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		Минутная подача	2500 мм/мин (1 мм/об)
Результат	Условия	Глубина резания, Ар	0,5 мм
	обработки	Ширина фрезерования, Ае	16 мм (профиль паза)
Время обработки уменьшилось и составило 2/3 от времени обработки фрезой другого производителя.		Наличие СОТС	СОЖ на водной основе
		Станок	Обрабатывающий центр

Корпуса поставляются без пластин

складская программа; ○ производственная программа; □ изготавливается под заказ

Информацию по процессу обработки с высокими подачами см. на стр. Б-11

Пластины режущие для работы с большими подачами и скоростями (FRM)

Черновая и чистовая обработка

- ✓ Положительный передний угол режущей кромки обеспечивает низкую силу резания. Доступны размеры более 25 мм;
- ✓ Возможность от черновой до чистовой обработки с использованием того же корпуса при разных используемых пластинах;
- ✓ Сплав DH102 с новым PVD покрытием подходит для закаленных материалов, а сплав JC8015 с PVD покрытием для обычной стали;
- ✓ Для обработки боковых стенок и нижних торцев из высокопрочной и закаленной стали;
- ✓ Длинная переферийная прямая кромка позволяет увеличить стойкость инструмента, уменьшить шероховатость поверхности и отклонение от вертикальности обрабатываемой стенки.

Обозначение	Dc,	r,	В,	C,	T,	С покр	ытием	
Ооозначение	мм	ММ	MM	ММ	мм	JC8015	DH102	
FRM-080-R05	- 8	0,5	7	1,2	2,4	0	0	
FRM-080-R10	0	1	′	1,2	2,4	0	0	
FRM-100-R05		0,5				0	0	
FRM-100-R10	10	1	8,5	1,5	2,6	0	0	
FRM-100-R20		2				-	0	
FRM-120-R05		0,5				0	0	
FRM-120-R10	12	1	10	1,5	3	0	0	000
FRM-120-R20	12	2	10	1,5	3	0	0	
FRM-120-R30		3				-	0	
FRM-160-R05		0,5				0	0	
FRM-160-R10		1				0	0	
FRM-160-R15	16	1,5	12	2	4	-	0	
FRM-160-R20		2				0	0	
FRM-160-R30		3				-	0	
FRM-170-R10	17	1	12	2	4	0	0	
FRM-200-R05		0,5				0	0	- C
FRM-200-R10		1				0	0	8
FRM-200-R15	20	1,5	15	2	5	-	0	0,000
FRM-200-R20		2				0	0	
FRM-200-R30		3				-	0	30000
FRM-210-R10	21	1	15	2	5	0	0	T (48)33° B
FRM-250-R05		0,5				-	0	
FRM-250-R10	25	1	18,5	2,5	6	0	0	
FRM-250-R20	25	2	10,5	2,5	"	0	0	0 5
FRM-250-R30		3				-	0	Средняя боковая выглаживающая кромка
FRM-300-R05		0,5				-	0	выплаживающая кромка
FRM-300-R10	30	1	22,5	3	7	0	0	
FRM-300-R20	30	2	22,3	3	'	0	0	
FRM-300-R30		3				-	0	
FRM-320-R05		0,5				-	0	
FRM-320-R10	32	1	23,5	3	7	0	0	
FRM-320-R20	JZ	2	20,0	3	,	0	0	
FRM-320-R30		3				-	0	

Пластины режущие (бочкообразные)

Для чистового построчного фрезерования вертикальных и наклонных стенок.

✓ Самая высокая производительность при чистовом построчном фрезеровании стенок

Обозначение	Dc,	r,	В,	T,	R,	С покр	ытием	
Ооозначение	ММ	ММ	ММ	ММ	ММ	JC8015	DH102	
KRM-160-R10-BR50	16	1	12	4	50	0	0	
KRM-200-R10-BR60	20	1	15	5	60	0	0	Бочкообразная боковая выглаживающая кромка

Рекомендации по выбору режимов резания

Базовые режимы резания Для концевых фрез RNM

			Скорость			Г	Іодача Г	о, мм/о	б		
Обрабатываемый материал	Твердость	Сплав	резания			M	ах Ар, и	ли Ае, м	IM		
Обрабатываемый материал	твердость	Cilliab	Vc,			Диам	етр инс	трумент	а, мм		
			м/мин	8	10	12	16	20	25	30	32
Серые чугуны (Сч25,Сч30)	160-260HB	DH103	250	0,35	0,4	0,45	0,5	0,5	0,5	0,5	0,5
Осрыс чугуны (Оч20,Оч00)	100-200110	JC8015	250	0,3	0,3	0,4	0,5	0,7	0,8	1,0	1,0
Высокопрочные чугуны (Вч60-2, Вч79-2)	170-300HB	DH103	200	0,3	0,35	0,35	0,4	0,4	0,4	0,4	0,4
BBIOGROUPO HIBIC TYPYTIBL (B 100 2, B 110 2)	170 000115	JC8015	200	0,3	0,3	0,3	0,4	0,5	0,6	0,8	0,8
Углеродистые стали (сталь 50)	180-280HB	DH103	200	0,3	0,35	0,35	0,4	0,4	0,4	0,4	0,4
этперодистые стали (сталь эс)	100-200115	JC8015	200	0,3	0,3	0,3	0,4	0,5	0,6	0,8	0,8
Низколегированная сталь (40ХН2МА)	180-280HB	DH103	180	0,28	0,32	0,32	0,36	0,36	0,36	0,36	0,36
Thistorici in pobarina in Cranb (40XI IZIVIA)	100-200110	JC8015	100	0,3	0,3	0,3	0,4	0,5	0,6	0,8	0,8
Штамповые стали (40ХГМА)	280-400HB	DH103	150	0,25	0,28	0,28	0,32	0,32	0,32	0,32	0,32
MIAMITOBBIE CIATIN (40XI IVIA)	200-400110	JC8015	130	0,3	0,3	0,3	0,4	0,5	0,6	0,8	0,8
Инстр, и высоколегир,стали (4Х5МФ1С, 1,2379)	180-225HB	DH103	150	0,25	0,28	0,28	0,32	0,32	0,32	0,32	0,32
VINCIP, VI BBICOKOJIETVIP, CTAJIVI (47/31VIV-10, 1,23/3)	100-223110	JC8015	130	0,3	0,3	0,3	0,4	0,5	0,6	0,8	0,8
Закаленные штамповые стали	40-55HRC	DH103	80	0,2	0,23	0,23	0,25	0,25	0,25	0,25	0,25
(4X5MΦ1C, 1,2379)	40-331 INC	DITIOS	00	0,3	0,3	0,3	0,3	0,4	0,5	0,6	0,6
Нержавеющие стали (08X18H10, 1,4401)	150-250HB	DH103	130	0,2	0,23	0,23	0,25	0,25	0,25	0,25	0,25
Пержавеющие стали (оохтотто, 1,4401)	130-230110	DITIOS	130	0,3	0,3	0,3	0,4	0,5	0,6	0,8	0,8
Marinia	80-150HB	DH103	250	0,35	0,4	0,4	0,5	0,5	0,5	0,5	0,5
Медные сплавы	00-100HB	KT9	250	0,4	0,5	0,6	0,8	1,0	1,2	1,6	1,6
A FIGURALIMODI, IO OFFICELL	30-100HB	DH103	300	0,35	0,4	0,4	0,5	0,5	0,5	0,5	0,5
Алюминиевые сплавы	30-100HB	KT9	300	0,4	0,5	0,6	0,8	1,0	1,2	1,6	1,6
Fachur		DH103	300	0,35	0,4	0,4	0,5	0,5	0,5	0,5	0,5
Графит	-	JC10000	300	0,4	0,5	0,6	0,8	1,0	1,2	1,6	1,6

Для сменных головок серии MRN

					Диа	аметр инс	трумента	, MM		
		Скорость	16	/ 17	20	/ 21	25	/ 26	30	/ 32
Обрабатываемый материал	Сплав	резания Vc, м/мин	N, мин ⁻¹	мин-1 мм/мин мин-1		Sm, мм/мин	N, мин ⁻¹	Sm, мм/мин	N, мин ⁻¹	Fm, мм/мин
						Max. Ap ı	и Мах. Ае			
Серый чугун (160-260 НВ)	DH103	300	6000	3000	4800	2400	3800	1900	3180	1590
Обрый чугун (100-200 ГПБ)	D11103	300		,5	-	,7	-	,8		,0
Высокопрочный чугун (170-300 НВ)	DH103	250	5000	2000	4000	1600	3200	1280	2650	1060
Blockonpo inbin 191911 (170 000 11B)	Diffico	200	0	,4	0	,5	C	,6	0),8
Углеродистая сталь (180-280 НВ)	DH103	250	5000	2000	4000	1600	3200	1280	2650	1060
The podylotan stand (100 200 HB)	JC8015	200		,4	-	,5		,6),8
Низколегированная сталь (180-280 НВ)	DH103	250	5000	1900	4000	1520	3200	1210	2650	1000
Thomason posanias crass (100 200 Hz)	JC8015	200	0,4		0,5			,6),8
Сталь для изготовления прессформ (280-400 НВ)	DH103	250	5000	1650	4000	1320	3200	1060	2650	880
OTABLE ATTA NOTOTOBIOTION TIPECOCOPOPIN (200 400 FTD)	JC8015	200		,4		,5		,6),8
Инструментальные	DH103	250	5000	1650	4000	1320	3200	1060	2650	880
и высоколегированные стали (180-255 НВ)	JC8015	200	-),4	-	,5		,6),8
Закаленная штамповая сталь (40-55 HRC)	DH103	135	2700	675	2150	540	1720	430	1430	360
Calabinatinati Etaliniosati Citatis (10 00 tinto)	511100	100		,3	-	,4	-	,5),6
Закаленная штамповая сталь (56-63HRC)	DH103	75	1500	300	1200	240	950	190	800	160
				,18	-	,2		25),3
Нержавеющая сталь (150-250НВ)	DH103	250	5000	1250	4000	1000	3200	800	2650	660
1100/1107/2010 1100/2011 11	JC8015			,4	-	,5	-	,6),8
Труднообрабатываемые	DH103	55	1100	275	875	220	700	175	580	145
и титановые сплавы (30-40HRC)	JC8015			,25	-	,3		35),4
Медные сплавы (80-150НВ)	DH103	250	5000	2500	4000	2000	3200	1600	2650	1325
	KT9			,5	-	,7	-	,8		,0
Алюминиевые сплавы (30-100НВ)	DH103	350	7000	3500	5600	2800	4500	2250	3700	1850
(10 100112)	KT9		-	,8		,0		,2		,6
Графит	DH103	300	7000	3500	5600	2800	4500	2250	3700	1850
r · · r	JC10000		0	,8	1	,0	1	,2	1	,6

При обработке стенок контурного фрезерования и т.п. глубина резания примерно равна ширине фрезерования Ае ≈ Ар При обработке плоскостей и пазов ширина фрезерования принимается ≤ D, при этом глубину рекомендуется снизить примерно в 2 раза

Для сменных головок серии MRN для высокоскоростной обработки

Обрабатываемый материал	Твердость	Сплав	Мах. Ар, мм	Мах. Ае, мм	Vс, м/мин	Fo, мм/об
Серые чугуны (Сч25,Сч30)	160-260HB	DH103 JC 8015	0,3	0,1xD	500	0,4-0,5
Высокопрочные чугуны (Вч60-2, Вч79-2)	170-300HB	DH103 JC 8015	0,3	0,1xD	400	0,35-0,4
Углеродистые стали (сталь 50)	180-280HB	DH103 JC 8015	0,3	0,1xD	400	0,35-0,4
Низколегированная сталь (40ХН2МА)	180-280HB	DH103 JC 8015	0,3	0,1xD	350	0,32-0,38
Штамповые стали (40ХГМА)	280-400HB	DH103 JC 8015	0,3	0,1xD	350	0,28-0,33
Инстр. и высоколегированные стали (4Х5МФ1С, 1.2379)	180-225HB	DH103 JC 8015	0,25	0,1xD	350	0,28-0,33
Закаленные штамповые стали (4Х5МФ1С, 1.2379)	40-55HRC	DH103	0,2	0,05xD	200	0,23-0,25
Закаленные штамповые стали (4Х5МФ1С, 1.2379)	56-63HRC	DH103	0,15	0,02xD	100	0,18-0,2
Нержавеющие стали (08X18H10, 1.4401)	150-250HB	DH103 JC 8015	0,25	0,1xD	350	0,23-0,25
Жаропрочные сплавы	30-40HRC	DH103 JC 8015	0,2	0,05xD	90	0,24-0,25
Медные сплавы	80-150HB	DH103 KT9	0,3	0,1xD	350	0,4-0,5
Алюминиевые сплавы	30-100HB	DH103 KT9	0,4	0,1xD	600	0,40,5
Графит	-	DH103 JC 10000	0,4	0,1xD	600	0,40,5

Для пластин серии Mirror Radius для работы с большими подачами (HRM/FRM)

Обрабатываемый материал	Твердость	Сплав	Ар, мм	Ае, мм	Vс, м/мин	Fo, мм/об
Углеродистые стали (сталь 50)	менее 250НВ	JC 8015	0,2-0,6		180	0,9-1,1
Штамповые стали (40ХГМА)	40-30HRC	JC 8015	0,2-0,6		175	0,9-1,1
Штамповые стали (4Х5МФ1С, 1.2379)	менее 255НВ	JC 8015	0,2-0,6	0,3-0,5D	175	0,9-1,1
Нержавеющие стали (08X18H10, 1.4401)	менее 250НВ	JC 8015	0,2-0,6	0,3-0,3D	165	0,9-1,1
Закаленные штамповые стали (4Х5МФ1С, 1.2379)	40-50HRC	JC 8015	0,1-0,3		150	0,8-1,1
Серые (Сч25,Сч30) и высокопрочные чугуны (Вч60-2, Вч79-2)	менее 300НВ	JC 8015	0,2-0,6		160	0,9-1,2

Поправочные коэффициенты на глубину резания в зависимости от величины углового радиуса

Угловой радиус,	Диаметр инструмента, мм										
мм	6	8-9	10-11	12-13	16-17	20-22					
0,5	0,65	0,6	0,6	0,6	-	-					
1	0,8	0,7	0,7	0,7	0,5	0,5					
1,5	1	0,85	0,85	0,85	-	-					
2	-	1	1	1	0,85	0,75					
3	-	-	-	-	1	1					

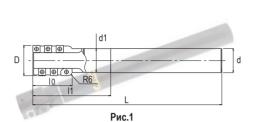
примечания:

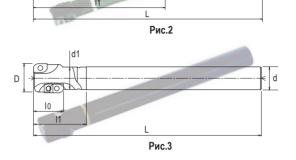
- 1. Ар зависит от диаметра фрезы, чем больше диаметр, тем больше допустимая Ар
- 2. Данные должны быть скорректированы в зависимости от жесткости технологической системы СПИД станка;
- В случае возникновения вибраций рекомендуется уменьшить глубину резания Ар, или частототу вращения шпинделя N и подачу на зуб;
- Если станок имеет недостаточную мощность привода, рекомендуется уменьшить глубину резания Ар, или частоту вращения шпинделя N и подачу на зуб;
- 5. Используйте воздушное охлаждение;
- 6. При обработке материалов с твердостью 50-55HRC(например штамповых сталей), необходимо уменьшать режимы резания на 30% от рекомендуемых;
- В случае повышенных требований к качеству поверхности, рекомендуется снизить величину минутной подачи Vf;
- 8. Рекомендуется обрабатывать поверхности с наклоном до 2°30';
- 9. При работе с вылетом свыше 5xD, скорректируйте режимы резания в сторону уменьшения.

ВАЖНЫЕ ПРИМЕЧАНИЯ ПО УСТАНОВКЕ ПЛАСТИН:

- 1. Тщательно протирайте гнездо под пластину
- 2. Протирайте пластину, особенно отверстие и опорные поверхности
- 3. Своевременно заменяйте изношенные крепежные винты через (10-15 пластин)
- 4. Соблюдайте усилия затяжки винтов

Окончательные режимы резания определяются в конкретных условиях, в зависимости от жесткости технологической системы. Более подробную информацию по режимам резания смотрите на сайте www.s-t-group.com в каталоге DIJET.

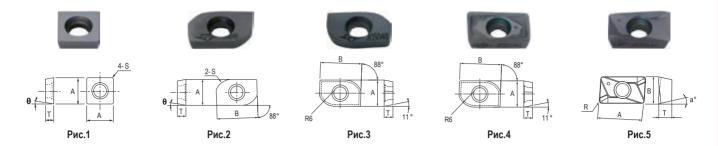




Серия Under Cutter Фреза для обработки поднутрений (Ø 25-50 мм)

 Благодаря радиусным пластинам уменьшается риск возникновения трещин на кромках штампов после закалки.

Концевые фрезы DUM

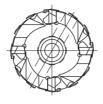

Обозначение		Рис.	D,	L,	d1,	10,	11,	d,		Пластина		D	Ключ
Орозначение		РИС.	MM	MM	ММ	ММ	MM	ММ	Верхняя	Нижняя	Вспомогательная	Винт	ключ
DUM-25023S20-W2R	0	3	25	250	19,3	23,5	53,5	20	ZPMT13T320R (1)	ZDMT13T320L (1)	-	DSW-307	A-10
DUM-32034S25-6R-	0	1	32	250	24,5	34	83	25	-	APGW150360L (1)	SPGA090304 (или SPMA) (3)	DSW-4085	A-15T
DUM-32050S25-6R*	0	1	32	250	-	50	-	25	-	APGW150360L (1)	SPGA090304 (или SPMA) (5)	DSW-4085	A-15T
DUM-320184T-MT5	0	2	32	250	24,5	34	184	MT5	-	APGW150360L (1)	SPGA090304 (или SPMA) (3)	DSW-4085	A-15T
DUM-32033S25-W6R	0	3	32	250	24,5	33	58	25	APGW150360R (1)	APGW150360L (1)	SPGA090304 (или SPMA) (1)	DSW-4085	A-15T
DUM-36038S32-6R-	0	1	36	250	31	38	89	32	-	APGW150360L (1)	SPGA090304 (или SPMA) (3)	DSW-4085	A-15T
DUM-36050S32-6R	0	1	36	250	31	50	101	32	-	APGW150360L (1)	SPGA090304 (или SPMA) (5)	DSW-4085	A-15T
DUM-40040S32-6R	0	1	40	250	31,5	40	91	32	-	APGW150360L (2)	SPGA090304 (или SPMA) (8)	DSW-4085	A-15T
DUM-40052S32-6R	0	1	40	250	31,5	52	103	32	-	APGW150360L (2)	SPGA090304 (или SPMA) (10)	DSW-4085	A-15T
DUM-50020S42-6R	0	1	50	250	41	20	70	42	-	APGW150360L (2)	SPGA090304 (или SPMA) (2)	DSW-4085	A-15T
DUM-50036S42-6R	0	1	50	250	40	36	87	42	-	APGW150360L (2)	SPGA090304 (или SPMA) (6)	DSW-4085	A-15T
DUM-50050S42-6R	0	1	50	250	40	50	107	42	-	APGW150360L (2)	SPGA090304 (или SPMA) (10)	DSW-4085	A-15T
DUM-50055S42-W6R	0	3	50	250	41	55,7	90	42	APGW150360R (2)	APGW150360L (2)	SPGA090304 (или SPMA) (8)	DSW-4085	A-15T

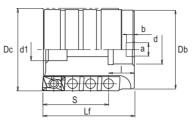
^{*} Твердосплавный корпус

Пластины режущие

Обозначение	Рис.	A,	В,	T,	R,		С покр	ытием
Ооозначение	РИС.	ММ	ММ	ММ	ММ	α	JC5015	JC5040
SPGA090304	1	9,525	9,525	3,18	4	11°	-	0
SPMA090304	1	9,525	9,525	3,18	4	11°	0	-
APGW150306L	2	9,525	15	3,18	6	11°	0	0
APGW150306R	3	9,525	15	3,18	6	11°	-	0
ZDMT13T320L	4	12,9	7,938	3,97	2	15°	0	0
ZDMT13T320R	5	13,3	7,938	3,97	2	11°	0	0

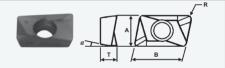
Рекомендации по выбору режимов резания


					Диа	аметр инс	трумента,	ММ			
	F 6	2	25	3	32	3	6	40		5	50
Обрабатываемый материал	Глубина резания	N, мин ⁻¹	Sm, мм/мин	N, мин ⁻¹	Fm, мм/мин						
						Max. Ap	и Мах. Ае				
Hypur (CC, CCC)	Ap=1D, Ae=1мм	1000	350	800	300	700	280	800	450	700	420
Чугун (GG, GGG)	Ap=1D, Ae=2мм	-	-	650	170	570	150	640	290	570	280
Инструментальные	Ap=1D, Ae=1мм	900	270	600	170	620	190	720	350	640	350
и штамповые стали (1,2379)	Ap=1D, Ae=2мм	-	-	-	-	530	110	560	200	510	220



Серия Roughing Chipper Торцово-цилиндрические фрезы с винтовыми стружечными канавками (Ø 50-80 мм)

(!) Корпус серии @-Вобу доп. информацию см. на стр. Б-11



Максимальная глубина фрезерования: Ap ≤ S; Максимальная ширина фрезерования: Ae ≤ 0,1D

Обозначение		Dc,	Db, мм	d1, мм	S, MM	Lf,	d, MM	а, мм	b, мм	I, MM	d2, мм	Кол-во пластин	Z	Пластина	Винт	Ключ
RFC5050R-22	0	50	45	17	50	90	22	10,4	6,3	20	16,5	12	3			
RFC6350R-22	0	63	60	17	50	70	22	10,4	6,3	20	16,5	16	4	ZPMT170508R	DSW-4510H	A-20SD
RFC8060R-27	0	80	60	20	60	80	27	12,4	7	22	16,5	25	5			

Пластины режущие

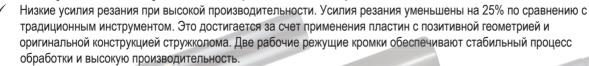
Обозначение	A,	В,	T,	R,	α	С покр	ытием
	141141		"""			JC5015	JC5040
ZPMT170508R	11	17	5,56	0,8	11°	0	0

Информацию о сплавах см. стр. Б-121-123

Рекомендации по выбору режимов резания

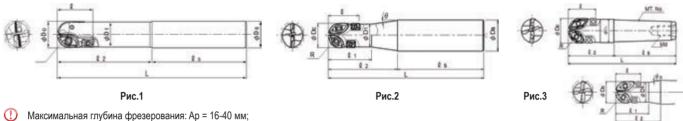
Базовые режимы резания

Обрабатываемый материал	Твердость	Сплав	Режимы резания	Полный паз	Уступ ————————————————————————————————————	Устул с маленькой глубиной резания								
		105045	Vc (м/мин)	90	110	110								
Чугуны	250HB	JC5015 JC5040	Fz (мм/зуб)	0,06	0,06	0,1								
			Ар (мм)	8 мм - 0,5D	1D - 1,5D	равна длине режущей кромки								
			Vc (м/мин)	75	90	90								
Высокопрочные чугуны	менее 220HB	JC5015 JC5040	Fz (мм/зуб)	0,05	0,06	0,09								
		0000.0	Ар (мм)	8 мм - 0,5D	1D - 1,5D	равна длине режущей кромки								
			Vc (м/мин)	-	100	100								
Углеродистые и легированные стали	менее 250HB	JC5040	Fz (мм/зуб)	-	0,06	0,08								
	200115		Ар (мм)	-	1D - 1,5D	равна длине режущей кромки								
			Vc (м/мин)	-	70	70								
Инструментальные стали	менее 255HB	JC5040	Fz (мм/зуб)	-	0,06	0,08								
	200115		Ар (мм)	-	1D - 1,5D	равна длине режущей кромки								
											Vc (м/мин)	-	110	110
Низкоуглеродистые стали	менее 200HB	JC5040	Fz (мм/зуб)	-	0,06	0,09								
	200HB		Ар (мм)	-	1D - 1,5D	равна длине режущей кромки								


ullet складская программа; \circ производственная программа; \Box изготавливается под заказ

Cepuя Swing Ball / Neo

Высокопроизводительные концевые радиусные фрезы для черновой обработки (Ø 16-50 мм)



✓ Высокая прочность пластин позволяет выполнять фрезерование с врезанием и винтовой интерполяцией. Оригинальная геометрия передней поверхности пластины обеспечивает высокую прочность вершины и позволяет эффективно удалять стружку из зоны резания.

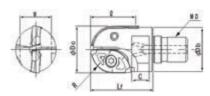
✓ Высокоточные места под режущие пластины. Специальная система крепления обеспечивает надежное позиционирование пластины в корпусе фрезы в течении всего процесса резания, в том числе и при тяжелых условиях обработки. Увеличенная толщина пластины обеспечивает повышенную производительность и стойкость при обработке «с ударом».

Максимальная глубина фрезерования: Ар = 16-40 мм; Максимальная ширина фрезерования: Ае ≤ 0,2D

Концевые фрезы серии SWB

	Обозначение		Рис.	R,	Dc,	€,	€2,	€s,	L,	£ 1,	D1,	θ	Ds,	MD		Пластина		Винт	Ключ
	Ооозпачение		4	ММ	ММ	ММ	ММ	ММ	ММ	MM	ММ	Ů	ММ	IVID	Основная	Вспомогательная	Переферийная	Бинт	KJIO4
	SWBX-16050-S16	0	1	8	16	15	50	80	130	-	15	-	16	-	SWBX216HM SWBX216MMW	SWBX216HS SWBX216MSW	ZPMT100308ZER-PL	DSW-2563H	A-08SD
	SWBX-20080-S20	0	1	10	20	29	80	80	160	-	18,7	-	20	-	SWBX220HM SWBX220MMW	SWBX220HS SWBX220MSW	ZPMT100308ZER-PL	DSW-307H	A-10
	SWBX-20120-S20	0	1	10	20	29	120	80	200	-	18,7	-	20	-	SWBX220HM SWBX220MMW	SWBX220HS SWBX220MSW	ZFIVIT 100300ZER-FL	TSW-2556H	A-08
Neo	SWBX-25080-S25	0	1	12,5	25	33	80	80	160	-	23,5	-	25	-	SWBX225HM SWBX225MMW	SWBX225HS SWBX225MSW	ZPMT100308ZER-PL	TSW-410H	A-15
	SWBX-25120-S25	0	1	12,5	25	33	120	80	200	-	23,5	-	25	-	SWBX225HM SWBX225MMW	SWBX225HS SWBX225MSW	ZFIVIT 100300ZER-FL	TSW-2556H	A-08
	SWBX-30120-S32	0	1	15	30	38	120	80	200	-	28,8	-	32	-	SWBX230HM SWBX230MMW	SWBX230HS SWBX230MSW	ZPMT100308ZER-PL	DSW-511H	A-20
	SWBX-30170-S32	0	1	15	30	38	170	80	250	-	29	-	32	-	SWBX230HM SWBX230MMW	SWBX230HS SWBX230MSW	ZFIVIT 100000ZLN-FL	DSW-2563H	A-08SD
Original	SWBM3242S32-G	0	1	16	32	44	60	160	220	-	29,9	-	32	-	SWB232HM-G SWB232MMW-G	SWB232HS-G SWB232MSW-G	ZCMT100308R	TSW-511 ESW-206	A-20 A-08SD

Новый тип данной серии Swing Ball NEO отличается повышенной жесткостью крепления пластин. Более подробную информацию см. на сайте в разделе "Новый продукт".


• складская программа; ○ производственная программа; □ изготавливается под заказ

Сменные головки Ø 16-32мм

- Максимальная глубина фрезерования: Ар = 16-40 мм; Максимальная ширина фрезерования: Ae ≤ 0,2D
- Унформацию о цилиндрических хвостовиках см. на стр. Б-118-120 фрезерных головок см. в разделе Е.

Информацию об оправках для

	Обозначение		Main	gnp	R,	Dc,	€,	Lf,	Db,	MD	C,	W,	Плас	тина	Винт	Ключ
	Ооозначение		Ĕ	ଊ	ММ	ММ	ММ	ММ	ММ	טואו	ММ	ММ	Основная	Вспомогательная	рині	КЛЮЧ
	MSWX-1615-M8	0	1	1	8	16	15	23	15,7	M8	8	12	SWBX216HM SWBX216MMW	SWBX216HS SWBX216MSW	DSW-2563H	A-08SD
Neo	MSWX-2022-M10	0	1	1	10	20	22	30	18,7	M10	10	14	SWBX220HM SWBX220MMW	SWBX220HS SWBX220MSW	DSW-307H	A-10
Ž	MSWX-2525-M12	0	1	1	13	25	25	35	23,5	M12	11	19	SWBX225HM SWBX225MMW	SWBX225HS SWBX225MSW	TSW-410H	A-15
	MSWX-3031-M16	0	1	1	15	30	31	43	27,9	M16	12	22	SWBX230HM SWBX230MMW	SWBX230HS SWBX230MSW	DSW-511H	A-20
Original	MSW-3225-M16	0	1	1	16	32	29,5	43	29,9	M16	13	22	SWB232HM-G SWB232MMW-G	SWB232HS-G SWB232MSW-G	TSW-511	A-20

Пластины режущие

Рис.7 Вспомогательная пластина для низких усилий резания при черновой обработке

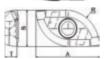


Рис.2 Основная пластина


Рис.8 Основная пластина

Рис.13 Вспомогательная

пластина для обработки

сварных швов и закаленных материалов

Рис.3 Вспомогательная

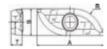


Рис.9 Основная пластина

Рис.14 Периферийная

пластина

Рис.4 Вспомогательная пластина

Рис.10 пластина

Вспомогательная

Рис.15 Периферийная

Рис.5 Периферийная пластина

Рис.11 Вспомогательная пластина

Рис.6 Основная пластина для низких усилий резания при черновой обработке

Рис.12 Основная пластина для обработки сварных швов и закаленных материалов

Рис.16 Периферийная

Обозначение	Рис.	Тип	, R, A,		В,	T,	r,			С покр	ытием		
Ооозначение	РИС.	Гип	ММ	ММ	ММ	ММ	ММ	JC5240	JC8118	JC8015	JC5015	JC5118	JC5040
SWBX216HM	1	Main	8	15	7.9	3.3	-	0	0				
SWBX216MMW	2	Main	8	15	7.9	3.3	-		0				
SWBX216HS	3	Sub	8	16.1	6.6	3.3	-	0	0				
SWBX216MSW	4	Sub	8	16.1	6.6	3.3	-		0				
SWBX220HM	1	Main	10	18.8	9.9	3.9	-	0	0				

[•] складская программа; ○ производственная программа; □ изготавливается под заказ

Корпуса поставляются без пластин

05	D	T	R,	Α,	В,	T,	r,			С покр	ытием		
Обозначение	Рис.	Тип	MM	ММ	MM	MM	мм	JC5240	JC8118	JC8015	JC5015	JC5118	JC5040
SWBX220MMW	2	Main	10	18.8	9.9	3.9	-		0				
SWBX220HS	3	Sub	10	22.9	8.8	3.9	-	0	0				
SWBX220MSW	4	Sub	10	22.9	8.8	3.9	-		0				
SWBX225HM	1	Main	12.5	22.3	12.4	4.6	-	0	0				
SWBX225MMW	2	Main	12.5	22.3	12.4	4.6	-		0				
SWBX225HS	3	Sub	12.5	26.3	10.5	4.6	-	0	0				
SWBX225MSW	4	Sub	12.5	26.3	10.5	4.6	-		0				
SWBX230HM	1	Main	15	27.9	14.7	6	-	0	0				
SWBX230MMW	2	Main	15	27.9	14.7	6	-			0			
SWBX230HS	3	Sub	15	32.8	12.3	6	-	0	0				
SWBX230MSW	4	Sub	15	32.8	12.3	6	-			0			
SWB232HM-G	8	Main	16	26	16	5.35	-			0			0
SWB232MMW-G	12	Main	16	26	16	5.35	-			0			
SWB232HS-G	10	Sub	16	31.7	13.9	5.35	-			0			0
SWB232MSW-G	13	Sub	16	31.7	13.9	5.35	-			0			
SWB240HMN	9	Main	20	30.4	20.8	6.85	-			0			0
SWB240MMW	12	Main	20	30.4	20.8	6.85	-			0			
SWB240HSN	11	Sub	20	37.5	16.3	6.85	-			0			0
SWB240MSW	13	Sub	20	37.5	16.3	6.85	-			0			
SWB250HMN-N	6	Main	25	34.4	25.7	7	-			0			0
SWB250MMW	12	Main	25	34.4	25.7	7	-			0			
SWB250HSN-N	7	Sub	25	42.6	20.8	7	-			0			0
SWB250MSW	13	Sub	25	42.6	20.8	7	-			0			
ZPMT100308ZER-PL	5	Peripheral	-	10	6	3.4	0.8						
SPGA090304	14	Peripheral	-	9.53	9.53	3.18	0.4						0
SPMA090304	14	Peripheral	-	9.53	9.53	3.18	0.4			0			
IM-SP43GS	15	Peripheral	-	12.7	12.7	4.76	0.8					0	0
ZCMT100308R	16	Peripheral	-	10.4	6.35	3.4	0.8				0		0

Рекомендации по обработке

Максимальная глубина погружения и подачи для серии Swing Ball / NEO

Обрабатываемый	Режимы		Ди	аметр і	инстру	мента,	мм	
материал	резания	Ø 16	Ø 20	Ø 25	Ø 30	Ø 32	Ø 40	Ø 50
lh-m.	Ар (мм)	3	4	5	10	10	15	15
Чугун	F (мм/мин)	0,25	0,30	0,40	0,40	0,40	0,40	0,40
Литейные стали	Ар (мм)	2	3	4	8	8	10	10
Легированные стали Штамповые стали	F (мм/мин)	0,2	0,25	0,30	0,30	0,30	0,30	0,30

	SWB /	SWBX
R, MM	А, мм	В, мм
8	0,5	0,01
10	1,2	0,02
12,5	1,4	0,02
15	1,7	0,03
16	3,4	0,09
20	4,3	0,12
25	5,2	0,14

Рекомендации по выбору режимов резания

Базовые режимы резания

Для концевых фрез серии SWBX

			Диаметр инструмента, мм Ø 20 Ø 25										
		C====1				Ø 20				Ø 25		Ø 32	2/30
Обрабатываемый материал	Твердость	Сплав/ Тип пласти- ны	Режимы резания	1	Ap Ap	2 dd dd	Ae D & P	1	d _A	2 d d d d d d d d d d d d d d d d d d	Ae D Q Q	1	o o
		JC5240	n (об/мин)	3 180	3 180	3 180	2 860	2 550	2 550	2 550	2 290	2 300	2 30
Углеродистые стали	150-250HB	(JC8118)	F (мм/мин)	1 000	800	890	570	890	690	760	500	1 020	770
(сталь 50)	100-20000	JC5040	Ар (мм)	5	10	5	16	6	12,5	6	20	10	16
		HM/HS	Ае (мм)	4	5	-	2	5	6,5	-	3	6	9
		JC5240	n (об/мин)	3 020	3 020	3 020	2 700	2 400	2 400	2 400	2 160	2 090	2 09
Литейные стали	150-280HB	(JC8118)	F (мм/мин)	92	760	820	540	840	640	720	480	920	70
литеиные стали	(> 40HRC)	JC5040	Ар (мм)	5	10	5	16	6	12,5	6	20	10	16
		HM/HS	Ае (мм)	4	5	-	2	5	6,5	-	3	6	9
		JC5240	n (об/мин)	2 700	2 700	2 700	2 390	2 160	2 160	2 160	1 910	1 950	1 95
Штамповые стали	150-255HB	(JC8118)	F (мм/мин)	810	630	680	480	690	540	590	420	810	60
(4X5MΦ1C)	100-2001 ID	JC5040	Ар (мм)	5	10	5	16	6	12,5	6	20	10	16
		HM / HS	Ае (мм)	4	5	-	2	6	6,5	-	3	6	9
			n (об/мин)	3 020	3 020	3 020	2 700	2 400	2 400	2 400	2 160	2 060	2 06
Стали для пресформ	30-36HRC	JC8118 (JC8015)	F (мм/мин)	650	600	450	540	530	480	480	430	600	40
и литейных форм	30-30FRC	HM/HS	Ар (мм)	5	10	5	16	6	12,5	6	20	10	16
			Ае (мм)	4	5	-	2	5	6,5	-	3	6	9
			n (об/мин)	2 700	2 700	2 700	2 400	2 100	2 100	2 100	1 900	1 800	18
Стали для пресформ	20 421 100	JC8118 (JC8015)	F (мм/мин)	580	530	400	480	460	420	420	380	540	35
и литейных форм	38-43HRC	HM/HS	Ар (мм)	5	10	5	16	6	12,5	6	20	10	16
			Ае (мм)	4	5	-	2	5	6,5	-	3	6	9
		JC8118	n (об/мин)	1 750	1 750	1 750	-	1 600	1 600	1 600	-	1 600	1 60
Закаленные	40 501100	JC8015	F (мм/мин)	400	320	350	-	400	350	350	-	480	60
штамповые стали (4X5MФ1C)	42-52HRC	HMW/MSW	Ар (мм)	до 2	до 4	до 2	-	до 3	до 5	до 3	-	до4	до 6
(1.10)		(HM/HS)	Ае (мм)	3	4	-	-	4	5	-	-	5	8
		JC8015	n (об/мин)	1 400	-	1 400	-	1 400	-	1 400	-	1 400	-
Сварные швы	E0 C011D0	JC8118	F (мм/мин)	350	-	280	-	350	-	280	-	350	-
и закаленные стали	52-62HRC	HMW/MSW	Ар (мм)	до 1	-	до 1	-	до 2	-	до 2	-	до 3	-
		(HM/HS)	Ае (мм)	3	-	-	-	4	-	-	-	5	-
		JC8015	n (об/мин)	3 180	3 180	3 180	2 860	2 550	2 550	2 550	2 290	2 300	2 30
Серые чугуны	160 000110	JC8118	F (мм/мин)	1 300	1 040	3 360	740	1 150	900	1 000	650	1 380	1 02
(Сч25,Сч30)	160-260HB	HMW/MSW	Ар (мм)	4	10	5	16	6	12,5	6	20	10	16
		(HM/HS)	Ае (мм)	5	5	-	2	5	6,5	-	3	6	9
		JC5240	n (об/мин)	3 020	3 020	3 020	2 700	2 400	2 400	2 400	2 160	2 060	2 0
Высокопрочные	470 200LID	(JC8118)	F (мм/мин)	1 100	910	980	650	1 000	770	860	600	1 130	82
чугуны (Вч60-2, Вч79-2)	170-300HB	JC8015	Ар (мм)	5	10	5	16	6	12,5	6	20	10	16
,		HM/HS	Ае (мм)	4	5	-	2	5	6,5	-	3	6	9
			n (об/мин)	3 020	3 020	3 020	2 700	2 400	2 400	2 400	2 160	2 060	2 06
Нержавеющие	4E0 0E01 ID	JC8118	F (мм/мин)	650	600	450	540	530	480	480	430	600	40
аустенитные стали	150-250HB	HM/HS	Ар (мм)	5	10	5	16	6	12,5	6	20	10	16
			Ае (мм)	4	5	-	2	5	6,5	-	3	6	9
			n (об/мин)	3 180	3 180	3 180	2 680	2 550	2 550	2 550	2 290	2 300	2 30
Нержавеющие	000117	JC8118	F (мм/мин)	1 000	800	890	570	890	690	760	500	1 020	77
ферритные, мартенситные стали	до 300НВ	HM/HS	Ар (мм)	5	10	5	16	6	12,5	6	20	10	16
Mapronominale craffi			Ае (мм)	4	5	_	2	5	6,5	-	3	6	9

^{* 1 -} Профильная обработка; 2 - Фрезерование пазов; 3 - Фрезерование переферией.

Рекомендации по выбору режимов резания

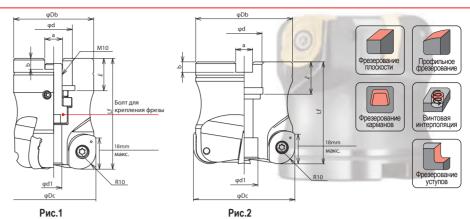
Базовые режимы резания Для концевых фрез серии SWB

								Диаметр инс [.]	грумента, мк	1			
				Ø	32			Ø 40				Ø 50	
Обрабатываемый материал	Твердость	Сплав	Режимы резания	2	3 Ae 0 0 4	1 Ae	Ø ₽	2	3 Ae P 6 A	1	4p 0A	2	3 Ae 2 6
			n (об/мин)	2 300	1 800	1 850	1 850	1 850	1 500	1 500	1 500	1 500	1 200
Углеродистые стали	150-280HB	JC5040	F (мм/мин)	800	450	1 070	740	800	480	1 000	680	720	420
(сталь 50)	130-200110	303040	Ар (мм)	10	28	10	20	12	35	10	25	15	40
			Ае (мм)	-	6	8	12	-	8	10	15	-	10
			n (об/мин)	2 090	1 670	1 670	1 670	1 670	1 340	1 350	1 350	1 350	1 100
Литейные стали	150-280HB	JC5040	F (мм/мин)	720	420	960	670	720	420	900	600	650	380
TIMITOMINIBIO OTCOM	(> 40HRC)	(JC8015)	Ар (мм)	10	28	10	20	12	35	10	25	15	40
			Ае (мм)	-	6	8	12	-	8	10	15	-	10
			n (об/мин)	1 950	1 560	1 560	1 560	1 560	1 250	1 250	1 250	1 250	1 000
Штамповые стали	150-255HB	JC5040	F (мм/мин)	630	390	810	560	620	350	750	500	550	300
(4X5MΦ1C)	100 200115	000010	Ар (мм)	10	28	10	20	12	35	10	25	15	40
			Ае (мм)	-	3	8	12	-	4	10	15	-	5
		100440	n (об/мин)	2 060	1 650	-	-	-	-	-	-	-	-
Стали для пресформ	30-36HRC	JC8118 (JC8015)	F (мм/мин)	310	330	-	-	-	-	-	-	-	-
и литейных форм	00 001 11 10	HM/HS	Ар (мм)	10	28	-	-	-	-	-	-	-	-
			Ае (мм)	-	6	-	-	-	-	-	-	-	-
		100440	n (об/мин)	1 800	1 500	-	-	-	-	-	-	-	-
Стали для пресформ	38_/(3HRC	JC8118 88-43HRC (JC8015)	F (мм/мин)	270	290	-	-	-	-	-	-	-	-
и литейных форм	30 1 31 11 (0	HM/HS	Ар (мм)	10	28	-	-	-	-	-	-	-	-
		HM/HS	Ае (мм)	-	6	-	-	-	-	-	-	-	-
			n (об/мин)	1 600	-	1 200	1 200	1 200	-	1 200	1 200	1 200	-
Закаленные штамповые стали	40-50HRC	JC8015	F (мм/мин)	400	-	540	420	420	-	540	400	420	-
(4X5MФ1C)	40-3011110	300013	Ар (мм)	до 4	-	до 4	до 6,5	до 5	-	до 5	до 8	до 6	-
,			Ае (мм)	-	-	5	8	-	-	6	10	-	-
			n (об/мин)	1 400	-	100	-	1 000	-	1 200	-	1 200	-
Сварные швы и за-	53-63HRC	JC8015	F (мм/мин)	280	-	350	-	350	-	400	-	360	-
каленные стали	33-0311110	300013	Ар (мм)	до 3	-	до 3	-	до 3	-	до 3	-	до 3	-
			Ае (мм)	-	-	5	-	-	-	6	-	-	-
			n (об/мин)	2 300	1 840	1 850	1 850	1 850	1 500	1 500	1 500	1 500	1 200
Серые чугуны	160-260HB	JC8015	F (мм/мин)	1 140	640	1 500	1 000	1 100	570	1 400	900	970	480
(Сч25,Сч30)	100-200110	300013	Ар (мм)	10	28	10	20	12	35	10	25	15	40
			Ае (мм)	-	6	8	12	-	8	10	15	-	10
			n (об/мин)	2 060	1 650	1 650	1 650	1 650	1 320	1 300	1 300	1 300	1 050
Высокопрочные чугу-	170-300HB	JC8015	F (мм/мин)	890	500	1 100	760	830	450	1 000	650	700	370
ны (Вч60-2, Вч79-2)	170-300115	300013	Ар (мм)	10	28	10	20	12	35	10	25	15	40
			Ае (мм)	-	6	8	12	-	8	10	15	-	10
			n (об/мин)	2 060	1 650	-	-	-	-	-	-	-	-
Нержавеющие	150-250HB	JC8118	F (мм/мин)	310	330	-	-	-	-	-	-	-	-
аустенитные стали	150-25000	HM/HS	Ар (мм)	10	28	-	-	-	-	-	-	-	-
			Ае (мм)	-	6	-	-	-	-	-	-	-	-
			n (об/мин)	2 300	1 800	-	-	-	-	-	-	-	-
Нержавеющие	EO 3001 ID	JC8118	F (мм/мин)	800	450	-	-	-	-	-	-	-	-
ферритные, мартенситные стали	до 300НВ	HM/HS	Ар (мм)	10	28	-	-	-	-	-	-	-	-
p. o.			Ае (мм)	-	6	-	-	-	-	-	-	-	-

^{* 1 -} Профильная обработка; 2 - Фрезерование пазов; 3 - Фрезерование переферией.

Номинальные режимы резания для сменных головок серии MSW / MSWX с твердосплавными оправками серии MSN

								Д	иаметр		мента, м	им					
Обрабатываемый материал	Твердость	Сплав			Ø 20					Ø 25	ı	I		Г	Ø 30	1	1
материал			L, MM	Ар, мм	Ае, мм	n, об/мин	F, мм/мин	L, MM	Ар, мм	Ae,	n, об/мин	F, мм/мин	L, MM	Ар, мм	Ае, мм	n, об/мин	F, мм/ми⊦
		JC5240	70	1,3	1,3	4 800	3 360	90	1,3	1,3	3 800	2 700	100	1,5	1,5	3 000	2 100
Углеродистые стали (сталь 50)	менее 250HB	(JC8118) JC5040	120	0,8	0,8	4 800	3 360	140	0,8	0,8	3 800	2 700	150	1,0	1,0	3 000	2 100
(*******		HM/HS	190	0,3	0,4	4 000	2 800	210	0,3	0,5	3 200	2 200	210	0,3	0,7	2 650	1 860
		JC5240	70	1,3	1,3	4 000	2 800	90	1,3	1,3	3 200	2 240	100	1,5	1,5	2 600	1 820
Литейные стали	менее 285НВ	(JC8118) JC5040	120	0,8	0,8	4 000	2 800	140	0,8	0,8	3 200	2 240	150	1,0	1,0	2 600	1 820
		HM/HS	190	0,3	0,4	3 600	2 500	210	0,3	0,5	2 800	1 960	210	0,3	0,7	2 300	1 600
		JC5240	70	1,3	1,3	4 000	2 800	90	1,3	1,3	3 200	2 240	100	1,5	1,5	2 600	1 820
Штамповые стали (4X5MФ1C)	менее 255НВ	(JC8118) JC5040	120	0,8	0,8	4 000	2 800	140	0,8	0,8	3 200	2 240	150	1,0	1,0	2 600	1 820
,		HM/HS	190	0,3	0,4	3 600	2 500	210	0,3	0,5	2 800	1 960	210	0,3	0,7	2 300	1 600
			70	1,3	1,3	2 800	1 700	90	1,3	1,3	2 300	1 400	100	1,5	1,5	1 900	1 100
Стали для пресформ и литейных форм	30-36HRC	JC8118 HM/HS	120	0,8	0,8	2 800	1 700	140	0,8	0,8	2 300	1 400	150	1,0	1,0	1 900	1 100
			190	0,3	0,4	2 400	1 400	210	0,3	0,5	2 000	1 200	210	0,3	0,7	1 600	1 000
			70	1,3	1,3	2 800	1 700	90	1,3	1,3	2 300	1 400	100	1,5	1,5	1 900	1 100
Стали для пресформ и литейных форм	38-43HRC	JC8118 HM/HS	120	0,8	0,8	2 800	1 700	140	0,8	0,8	2 300	1 400	150	1,0	1,0	1 900	1 100
			190	0,3	0,4	2 400	1 400	210	0,3	0,5	2 000	1 200	210	0,3	0,7	1 600	1 000
		JC8015 JC8118	70	0,5	1,0	3 000	1 500	90	0,5	1,0	2 500	1 250	100	0,8	0,8	2 000	1 000
Сварные швы и за- каленные стали	40-50HRC	HMW/ MSW	120	0,3	0,4	2 500	1 250	140	0,3	0,5	2 000	1 000	150	0,5	0,7	1 800	900
		(HM/HS)	190	-	-	-	-	210	-	-	-	-	210	0,2	0,7	1 600	800
Закаленные		JC8118 JC8015	70	0,5	0,5	2 300	920	90	0,5	0,7	1 900	760	100	0,6	0,8	1 600	720
штамповые стали	55-62HRC	HMW/ MSW	120	0,3	0,4	2 000	800	140	0,3	0,5	1 600	640	150	0,3	0,7	1 300	590
(4X5MΦ1C)		(HM/HS)	190	-	-	-	-	210	-	-	-	-	210	-	-	-	-
Серые (Сч25,Сч30) и		JC8015 JC8118	70	1,5	1,5	4 000	3 200	90	1,5	1,5	3 200	2 560	100	1,5	1,5	2 600	2 100
высокопрочные чугуны (Вч60-2. Вч79-2)	менее 300НВ	HMW/ MSW	120	1,0	1,0	4 000	3 200	140	1,0	1,0	3 200	2 560	150	1,0	1,0	2 600	2 100
(D400-2, D479-2)		(HM/HS)	190	0,3	0,4	3 600	2 900	210	0,3	0,5	2 800	2 240	210	0,3	0,7	2 300	1 800
			70	1,3	1,3	2 800	1 700	90	1,3	1,3	2 300	1 400	100	1,5	1,5	1 900	1 100
Нержавеющие аустенитные стали-	150-250HB	JC8118 HM/HS	120	0,8	0,8	2 800	1 700	140	0,8	0,8	2 300	1 400	150	1,0	1,0	1 900	1 100
			190	0,3	0,4	2 400	1 400	210	0,3	0,5	2 000	1 200	210	0,3	0,7	1 600	1 000
Нержавеющие			70	1,3	1,3	4 800	3 360	90	1,3	1,3	3 800	2 700	100	1,5	1,5	3 000	2 100
ферритные,	до 300НВ	JC8118 HM/HS	120	0,8	0,8	4 800	3 360	140	0,8	0,8	3 800	2 700	150	1,0	1,0	3 000	2 100
мартенситные стали			190	0,3	0,4	4 000	2 800	210	0,3	0,5	3 200	2 200	210	0,3	0,7	2 650	1 860



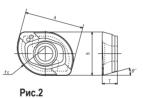
Серия Wild Radius

Торцовые фрезы WDR

- ✓ Высокопроизводительное резание для черновой обработки;
- Двойной замок на корпусе и пластине предотвращает смещение пластин.

Обозначение		Dc,	Lf,	Db, мм	d, MM	d1, мм	а, мм	b, мм	I, MM	Z	Пластина	Болт	Винт	Ключ
WDR-3050R-22	0	50	65	47	22	9,6	10,4	6,3	19	3		M10 x 1,5 x 25		
WDR-4063R-22	0	63	63	60	22	17	10,4	6,3	20	4		M10 x 1,5 x 50		
WDR-4063R-27	0	63	63	60	27	20	12,4	7	22	4	YDM*1505100***	M12 x 1,75 x 40	CSW-513H	A-20
WDR-5080R-27	0	80	63	76	27	20	12,4	7	22	5	TDIVI 1505100	M12 x 1,75 x 40	C244-213H	A-20
WDR-6100R-32	0	100	63	96	32	26	14,4	8	32	6		M16		
WDR-6125R-40	0	125	63	100	40	32	16,4	9	32	6		M20 x 2,5 x 45		

Концевые фрезы WDR



Обозначение		Dc, мм	I2, мм	ls, MM	L, MM	D1, мм	MD	Z	Пластина	Винт	Ключ
WDR-2040-120-MT5M20	0	40	120	130	250	38	M20 x 2.5	2	YDM*1505100***	CSW-513H	A-20

Пластины режущие

Обозначение	Рис.	A,	T,	В,	20	Δ0	Допуск на	Момент	С покр	ытием
Ооозначение	РИС.	мм	ММ	мм	rε	0	толщину	затяжки, Нм	JC7560	JC8118
YDMW1505100ZTR	1	21.5	5.56	15.875	10	15	M	F. F.	0	0
YDMT1505100ZER	2	21,5	5,56	15,075	10	15	M 5,5		0	0

Рекомендации по выбору режимов резания

Обрабатываемый материал	Твердость	Сплав	Ар, мм	Vс, м/мин	Fz , мм/зуб
Углеродистые стали (сталь 50)	менее 250НВ	JC7560 (JC8118)	1,5-3	130-280	0,4-0,7
Штамповые стали (4Х5МФ1С, 1.2379)	менее 255НВ	JC7560 (JC8118)	1,5-3	130-280	0,4-0,7
Штамповые стали (40ХГМА)	30-36HRC	JC7560 (JC8118)	1,5-3	130-280	0,4-0,7
Закаленные штамповые стали (4Х5МФ1С, 1.2379)	38-43HRC	JC8118	0,5-2	60-120	~ 0,45
Закаленные стали	42-52HRC	JC8118	0,3-1,5	50-80	~ 0,25
Серые (Сч25,Сч30)	менее 300НВ	JC8118 (JC7560)	1,5-3	130-280	0,5-0,8
Высокопрочные чугуны (Вч60-2, Вч79-2)	менее 300НВ	JC8118	1,5-3	130-280	0,5-0,8
Нержавеющие стали (08X18H10, 1.4401)	менее 250НВ	JC7560	0,5-2	60-120	~ 0,45

[•] складская программа; ○ производственная программа; □ изготавливается под заказ

О Корпуса поставляются без пластин

Сменные головки серии Tuff Modular System

- ✓ Производительность обработки в 2-3 раза выше, чем у фрез с классическим стальным корпусом.
- ✓ При использовании фрезерной системы Tuff Modular System снижается вибрация, сокращается время обработки и, тем самым, увеличивается эффективность использования инструмента.
- ✓ Любые типы обработки, от черновой до чистовой, за счет возможности комбинировать, используя 15 различных видов фрезерных головок.
- ✓ Унификация в одну оправку может быть установлено несколько различных видов головок.
- Возможность замены поврежденной фрезерной головки без замены оправки.

				Обра	абать	іваем	ьіе м	атері	иалы
Серия	Вид обработки	Диапазон диаметров	Страница	Легкие сплавы	Чугуны	Стали	Нержавеющие стали	Закаленные стали	Труднообраба- тываемые
Mirror Ball - MBX	Профильное фрезерование пазов Фрезерование карманов	Ø10-32	Б-89	+	+	+	+	+	
Mirror Radius - MRX	Фрезерование Профильное фрезерование жарманов Фрезерование уступов	Ø10-32	Б-97	+	+	+	+	+	+
Super Die Master - SDH	Фрезерование карманов Фрезерование уступов Винтовая интерполяция	Ø15-42	Б-72	+	+	+	+	+	+
Blade Chipper - MTD	Фрезерование карманов Фрезерование уступов Винтовая интерполяция	Ø25-32	Б-76				+		
Extreme Diemate - MTX	Фрезерование карманов уступов Винтовая интерполяция	Ø25-40	Б-77				+		
Aero Chipper - MAL	Фрезерование фрезерование фрезерование пазов Фрезерование карманов Винтовая интерполяция	Ø20 25 28 32 35 40	Б-83	+		+	+		+
Side Chipper - MIC	Фрезерование плоскости Фрезерование уступов Фрезерование пазов	Ø16-40	Б-53	+	+	+	+	+	
Shoulder Extreme - MSX	Фрезерование плоскости фрезерование уступов фрезерование пазов	Ø25-40	Б-54		+	+	+	+	

ullet складская программа; \circ производственная программа; \Box изготавливается под заказ

				Обра	бать	іваем	лые м	атері	алы
Серия	Вид обработки	Диапазон диаметров	Страница	Легкие сплавы	Чугуны	Стали	Нержавеющие стали	Закаленные стали	Труднообраба- тываемые
Swing Ball - MSWX, MSW									
3111	Профильное фрезерование уступов Фрезерование пазов	Ø16-32	Б-108		+	+	+	+	
Super End Chipper - MEC									
	Фрезерование пазов Фрезерование Фрезерование фрезерование пазов Фрезерование пазов Фрезерование карманов Фрезерование интерполяция	Ø16-33	Б-59	+	+	+	+	+	
High Feed Die Master - MSG									
	Фрезерование плоскости Фрезерование фрезерование карманов Фрезерование карманов Фрезерование уступов	Ø25-42	Б-38		+	+	+	+	+
Multi Extreme - MEX									
	Фрезерование плоскости Фрезерование фрезерование карманов Фрезерование карманов Фрезерование уступов	Ø32-42	Б-35		+	+	+	+	
Quick and Mini - MPM, MQX, MXG, MQT									
	Фрезерование плоскости Фрезерование уступов Фрезерование пазов	Ø10-42	Б-45, 44,51, 44		+	+	+	+	+
Back and Forth Cutter - MPF									
	Переферийное фрезерование	Ø30-40	Б-29		+	+	+	+	+
S-Head - SMSA, SMSR, SMAL, STLP									
	Фрезерование плоскости Профильное фрезерование уступов	Ø16-32	Б-81	+		+	+	+	+
Modular Heads - MSN									
	MSN - Твердосплавные оправки для сменных головок с цилиндрическим хвостовиком	Ø9,8-32	Б-118						

Модульная фрезерная система Dijet

В модульной фрезерной системе Dijet совмещены лучшие стороны различных по конструкции инструментальных систем:

Цельнотвёрдосплавного инструмента, инструментов со сменными пластинами и модульной компоновки.

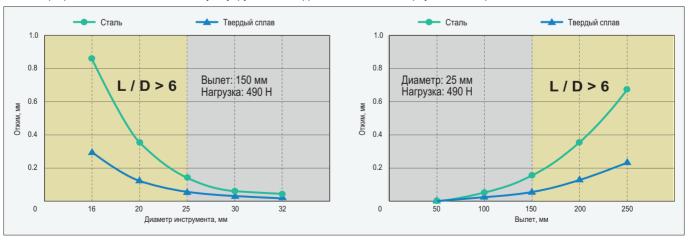
Система - сменные фрезерные головки в сочетании с твердосплавными хвостовиками обладает жесткостью, сравнимой с монолитным твердосплавным инструментом, что позволяет значительно снизить риск возникновения вибраций, даже при работе с большим вылетом инструмента.

Преимущества конструкций со сменными режущими пластинами достаточно очевидны:

- ✓ Отсутствие затрат на переточку и перепокрытие;
- ✓ Отсутствует трещинообразование на инструменте из-за пайки или заточки;
- У Можно применять различные инструментальные материалы, в том числе режущую керамику, которые не подлежат пайке;
- ✓ Стабильная точность размеров и геометрии пластин;
- На одном корпусе инструмента можно устанавливать пластины из разных марок сплава и разной геометрии;
- ✓ Формирование передней грани на стадии изготовления пластины позволяет осуществлять эффективное формирование и дробление стружки;
- ✓ Сокращение времени смены инструмента;
- ✓ Многократное использование корпусов;
- ✓ Несколько рабочих кромок у сменных пластин.

Плюсы модульной системы:

- Унификация в одну оправку может быть установлено несколько различных видов фрезерных головок;
- ✓ Любые типы обработки от черновой до чистовой за счет возможности комбинировать, используя 15 видов сменных головок и более 60 типов хвостовиков;
- ✓ Простая конструкция соединения с резьбовым хвостовиком позволяет производить демонтаж без снятия оправки;
- Сменные головки можно использовать с универсальными фрезерными оправками других производителей.

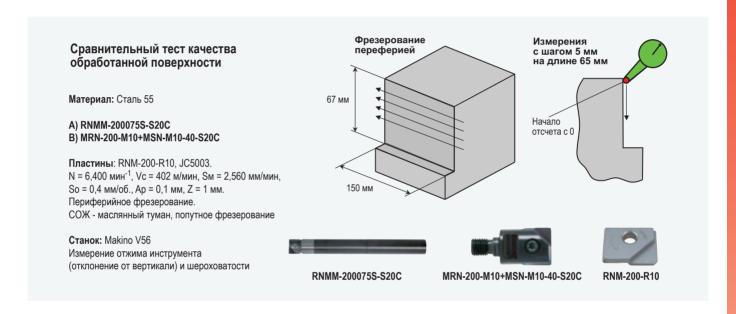

Причиной возникновения вибраций являются упругие деформации под действием силы резания (отжим). Если рассмотреть фрезу, как консольную балку круглого сечения, на один конец которой воздействует результирующий вектор сил резания, то после всех преобразований получим следующую формулу:

$$f = \frac{P \cdot I^3}{3E \cdot J}$$

где: f - величина прогиба (отжим); P - результирующая сила резания; I - вылет инструмента; E - модуль упругости (модуль Юнга) для стали =206 (Гпа), а для твердого сплава 520 (Гпа), в 2.5 раза больше; J - момент инерции (для круглого сечения 0,05d4).

Анализ формулы показывает, что для снижения вибраций необходимо:

- ✓ Вылет фрезы должен быть минимальным. При увеличении вылета отжим увеличивается. Например, при увеличении вылета в 1,25 раза отжим увеличивается в 1,95 раза при неизменных остальных параметрах.
- ✓ Диаметр хвостовика должен быть максимальным. При увеличении диаметра хвостовика увеличивается момент инерции поперечного сечения и отжим уменьшается.
 - Например, при увеличении диаметра хвостовика в 1,25 раза, отжим уменьшается в 2,44 раза при неизменном вылете фрезы и остальных параметрах.
- ✓ Чем выше модуль упругости, тем меньше отжим при неизменном вылете и диаметре оправки и остальных параметрах. На графиках показано влияние модуля упругости для фрезы со стальным корпусом и с твердосплавным хвостовиком.



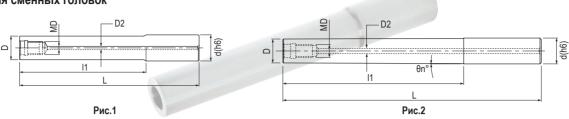
Возникновение вибраций крайне негативно сказывается на стойкости инструмента и качестве получаемой поверхности. При возникновении вибрации приходится значительно снижать режимы резания, что приводит к потере производительности.

Характер повреждения пластин Сравнения стойкости Износ по задней поверхности hz = 0,202 мм Стальной корпус ЈС5040 после Стальной **25** Выкра корпус 25 м (5,2 мин) 21 _{раз лучше} MSH + MSN 525 MSH - MSN ЈС5040 после 525 м (109 мин) 100 200 300 400 500 600 Q = 1890 куб.см. Длинна обработки, м Износ по задней Материал: 1055 (201 НВ); поверхности hz = 0,202 мм Пластина № WDMW050316ZTR, JC5040; $N = 2,390 \text{ мин}^{-1}$, Vc = 150 м/мин, F = 4,800 мм/мин, f = 2 MM/o6., Ap = 0.3 MM, Ae = 12 MM, L = 190 MM, попутное фрезерование с воздушным охлаждением

Измерение отжима (отклонение от вертикали)

Измерение шероховатости СХЕМА ЗАМЕРА А) Цельнотвердосплавный корпус (биение на станке: 2 мкм) 0.8 MM MKM MKM 0.6 0 0 0 0.4 0.2 5 0 +1 0.0 10 0 0 -0.2 15 +3 +2 -0.4 20 +3 +3 -0.6 25 +5 +3 0.5 30 +5 +4 0.0 1.0 1.5 2.5 3.0 4.0 35 +5 +5 В) Фрезерная головка + твердосплавный хвостовик (биение на станке: 6 мкм) 40 +6 +5 0.6 45 +7 +5 0.4 +7 50 +5 0.2 55 +6 +8 0.0 60 +8 +6 MKM -0.2 65 +8 +8 -0.4 -0.6 -0.8 0.0 1.0 1.5 2.5 3.0 3.5 4.0 ие: 8 мкм

• складская программа; ○ производственная программа; □ изготавливается под заказ

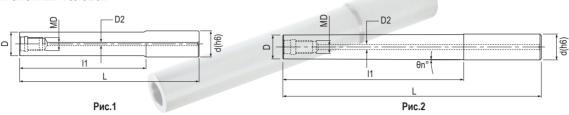

Корпуса поставляются без пластин

Серия MSN

Оправки для сменных головок

Обозначение		Рис.	D, мм	I1, мм	L, MM	d, мм	θn°	MD	Bec, кг	D2, мм
			Твердос	плавные опра	вки для смені	ных головок с	ерии MSN			
MSN-M6-12-S10C	0	1	9,7	12	60	10	-	M6	0,06	3
MSN-M6-30-S10C	0	1	9,7	30	80	10	-	M6	0,07	3
MSN-M6-50-S10C	0	1	9,7	50	100	10	-	M6	0,09	3
MSN-M6-80-S10C	0	1	9,7	80	130	10	-	M6	0,12	3
MSN-M6-35T-S12C	0	2	9,5	35	92	12	1°30'	M6	0,12	3
MSN-M6-57T-S12C	0	2	9,5	57	114	12	1°	M6	0,14	3
MSN-M6-15-S12C	0	1	11,5	15	60	12	-	M6	0,08	3
MSN-M6-30-S12C	0	1	11,5	30	80	12	-	M6	0,11	3
MSN-M6-50-S12C	0	1	11,5	50	100	12	-	M6	0,13	3
MSN-M6-80-S12C	0	1	11,5	80	130	12	-	M6	0,18	3
MSN-M6-65T-S16C	0	2	11,2	65	125	16	1°45'	M6	0,28	3
MSN-M8-120-S16C	0	1	15,5	120	175	16	-	M8	0,42	4
MSN-M8-152-S16C	0	1	15,5	152	207	16	-	M8	0,51	4
MSN-M8-20-S16C	0	1	15,5	20	75	16	-	M8	0,17	4
MSN-M8-40-S16C	0	1	15,5	40	95	16	-	M8	0,22	4
MSN-M8-80-S16C	•	1	15,5	80	135	16	-	M8	0,32	4
MSN-M8-40T-S20C	0	2	14,5	40	100	20	3°30'	M8	0,36	4
MSN-M8-77T-S20C	0	2	14,5	77	143	20	1°45'	M8	0,49	4
MSN-M10-140-S20C	0	1	19,5	140	200	20		M10	0,8	4
MSN-M10-140T-S20C	0	2	19,5	140	200	20	0°12'	M10	0,77	4
MSN-M10-160-S20C	0	1	19,5	160	220	20	-	M10	0,87	4
MSN-M10-20-S20C	0	1	19,5	20	80	20	-	M10	0,29	6
MSN-M10-210-S20C	0	1	19,5	210	270	20	-	M10	1,07	4
MSN-M10-40-S20C	0	1	19,5	40	100	20	-	M10	0,39	4
MSN-M10-40T-S20C	0	2	19,5	40	100	20	0°43'	M10	0,39	4
MSN-M10-70-S20C	0	1	19,5	70	130	20	-	M10	0,5	4
MSN-M10-90-S20C	•	1	19,5	90	150	20	-	M10	0,6	4
MSN-M10-90T-S20C	0	2	19,5	90	150	20	0°19'	M10	0,58	4
MSN-M10-85T-S25C	0	2	18,5	85	161	25	2°	M10	0,9	4
MSN-M12-105-S25C	0	1	24	105	170	25	-	M12	1,03	6
MSN-M12-135-S25C	0	2	24	135	215	25	-	M12	1,3	6
MSN-M12-155-S25C	0	1	24	155	220	25	-	M12	1,34	6
MSN-M12-200-S25C	0	1	24	200	265	25	-	M12	1,58	6
MSN-M12-25-S25C	0	1	24	25	90	25	-	M12	0,53	6
MSN-M12-55-S25C	0	1	24	55	120	25	-	M12	0,72	6
MSN-M12-100T-S32C	0	2	23,5	100	180	32	2°	M12	1,61	6
MSN-M16-105-S32C	0	1	29	105	170	32	-	M16	1,59	8
MSN-M16-117T-S32C	0	2	29	117	197	32	0°38'	M16	1,88	8

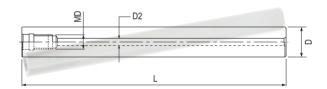
① При использовании фрезерных головок со стальным корпусом серии MGN, необходимо следовать рекомендация по выбору режимов резания для оправок серии MSN-...



[•] складская программа; о производственная программа; о изготавливается под заказ

Серия MSN

Оправки для сменных головок



Обозначение		Рис.	D, мм	I1, мм	L,	d, mm	θn°	MD	Вес, кг	D2, мм
			Твердос	плавные опра	вки для смені	ных головок се	рии MSN		1	
MSN-M16-127-S32C	0	1	29	127	207	32	-	M16	1,89	8
MSN-M16-127T-S32C	0	2	29	127	207	32	0°30'	M16	2,23	8
MSN-M16-155-S32C	0	1	29	155	220	32	-	M16	2,04	8
MSN-M16-177-S32C	0	1	29	177	257	32	-	M16	2,32	8
MSN-M16-177T-S32C	0	2	29	177	257	32	0°23'	M16	2,78	8
MSN-M16-195-S32C	0	1	29	195	260	32	-	M16	2,4	8
MSN-M16-197-S32C	0	2	29	197	270	32	0°23'	M16	3	8
MSN-M16-225-S32C	0	1	29	225	290	32	-	M16	2,57	8
MSN-M16-245-S32C	0	1	29	245	310	32	-	M16	2,74	8
MSN-M16-25-S32C	0	1	29	25	90	32	-	M16	0,85	8
MSN-M16-295-S32C	0	1	29	295	360	32	-	M16	3,17	8
MSN-M16-55-S32C	0	1	29	55	120	32	-	M16	1,13	8
MSN-M16-77-S32C	0	1	29	77	157	32	-	M16	1,47	8
MSN-M16-97-S32C	0	1	29	97	177	32	-	M16	1,64	8

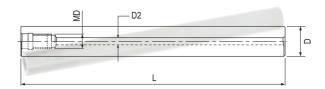
Серия MSN

Твердосплавные оправки для сменных головок

✓ Отверстие для внутреннего подвода СОЖ

Обозначение		D, мм	L, mm	MD	Bec, кг	D2, мм
MSN-M6-67S-S9.8C	0	9,8	67	M6	0,06	3
MSN-M6-107S-S9.8C	0	9,8	107	M6	0,10	3
MSN-M6-82S-S10C	0	10	82	M6	0,08	3
MSN-M6-122S-S10C	0	10	122	M6	0,12	3
MSN-M6-80S-S11.8C	0	11,8	80	M6	0,11	3
MSN-M6-120S-S11.8C	0	11,8	120	M6	0,17	3
MSN-M6-90S-S12C	0	12	90	M6	0,13	3
MSN-M6-130S-S12C	0	12	130	M6	0,19	3
MSN-M8-97S-S15C	0	15	97	M8	0,21	4
MSN-M8-147S-S15C	0	15	147	M8	0,44	4
MSN-M8-197S-S15C	0	15	197	M8	0,21	4
MSN-M8-107S-S16C	0	16	107	M8	0,27	4
MSN-M8-157S-S16C	0	16	157	M8	0,40	4
MSN-M10-130S-S18C	0	18	130	M10	0,42	4
MSN-M10-190S-S18C	0	18	190	M10	0,62	4
MSN-M10-240S-S18C	0	18	240	M10	0,89	4

ullet складская программа; \circ производственная программа; \Box изготавливается под заказ



Серия MSN

Твердосплавные оправки для сменных головок

✓ Отверстие для внутреннего подвода СОЖ

Обозначение		D, мм	L, mm	MD	Bec, кг	D2, мм
MSN-M10-130S-S20C	0	20	130	M10	0,53	4
MSN-M10-190S-S20C	0	20	190	M10	0,78	4
MSN-M10-250S-S20C	0	20	250	M10	1,02	4
MSN-M12-185S-S23C	0	23	185	M12	0,98	6
MSN-M12-265S-S23C	0	23	265	M12	1,42	6
MSN-M12-185S-S24C	0	24	185	M12	1,07	6
MSN-M12-265S-S24C	0	24	265	M12	1,54	6
MSN-M12-145S-S25C	0	25	145	M12	0,91	6
MSN-M12-215S-S25C	0	25	215	M12	1,36	6
MSN-M12-285S-S25C	0	25	285	M12	1,80	6
MSN-M16-160S-S28C	0	28	160	M16	1,22	8
MSN-M16-230S-S28C	0	28	230	M16	1,77	8
MSN-M16-310S-S28C	0	28	310	M16	2,41	8
MSN-M16-157S-S32C	0	32	157	M16	1,61	8
MSN-M16-217S-S32C	0	32	217	M16	2,22	8
MSN-M16-287S-S32C	0	32	287	M16	2,94	8
MSN-M16-357S-S32C	0	32	357	M16	3,66	8

Рекомендации по выбору усилия зажима для сменных головок

Резьба	Усилие затяжки сменных головок, Нм	Размер ключа исключая SMSA	Размер ключа для SMSA	Fz, мм/зуб
M6	8,0	8	-	0,25
M8	16	10, 12	14	0,2-0,25
M10	16	14, 15	17	0,2-0,25
M12	20	17	22	0,2-0,25
M16	25	22, 26	27	0,45

При монтаже фрезерной головки, нобходимо обратить внимание на контактные поверхности головки и оправки.
Контактные поверхности должны быть тщательно очищены. После установки необходимо проверить зазор между головкой и корпусом фрезы.

ullet складская программа; \circ производственная программа; \Box изготавливается под заказ

Твердые сплавы с покрытием для фрезерной обработки

Описание сплавов и технологические особенности применения

Группа применяемости по ISO	Сплавы	Сплавы	Покрытие	Описание			
		DH103	AlCrN / AlTiCrN / TiSiN	Высокая износостойкость и стойкость к окислению, устойчивость к пластической деформации. Используется для обработки закаленной стали, а также обычной стали на высоких скоростях.			
		DH108	AlCrN / AlTiCrN / TiSiN	Высокая износостойкость и прочность. Используется для чистовой обработки труднообрабатываемых материалов и чугуна, обработка нержавеющей стали, средне- и высокоскоростная обработка стали.			
		DH110	AlCrN / AlTiCrN / TiSiN	Высокая износостойкость и прочность. Используется для обработки закаленной стали, среднеи высокоскоростная обработка чугуна и стали.			
		DH115	AlCrN / AlTiCrN / TiSiN	Высокая прочность. Подходит для чистовой обработки закаленной стали, чугуна и для высокоскоростной обработки обычной стали.			
		JC8015	AlTiCrN	Особомелкозернистый твердый сплав. Обработка сырых и закаленных сталей и нержавеющих сталей.			
	Износостойкость	JC8118	AlTiCrN	Твердый сплав для обработки материалов группы P с хорошей теплостойкостью (красностойкостью). Первый выбор для обработки углеродистых, инструментальных и штамповых сталей.			
Р		JC5015	TiAIN	Универсальный особомелкозернистый твердый сплав, обладает высокой износостойкостью и прочностью. Прекрасно подходит для обработки сталей, нержавеющих сталей и чугунов. Подходит для "сухой" обработки и с применением СОЖ.			
Стали		JC5118	TiAIN	Универсальный особомелкозернистый твердый сплав. Обработка широкого спектра материалов. От черновой до получистовой типов обработки.			
	Прочность	JC5240	AlTiN	Мелкозернистый твердый сплав. Высокая прочность. Подходит для обработки стали, штамповой стали и чугуна.			
		JC5040	TiAIN	Твердый сплав для обработки материалов группы М, обладающий высокой прочностью и стойкостью к образованию трещин. Черновая обработка инструментальных, штамповых и нержавеющих сталей.			
		JC8050	AlTiCrN	Твердый сплав с прекрасной теплостойкостью (красностойкостью) и стойкостью к термическим трещинам. Прерывистая обработка сталей, включая нержавеющие и жаропрочных материалов.			
		JC7550	TiAIN / AICrN	Сплав с PVD покрытием. Высокая стойкость к термическому удару и излому, стойкость к окислению. Подходит для черновой обработки материалов твердостью 35-40 HRC.			
		JC7560	TiAIN / AICrN	Твердый сплав с прекрасной теплостойкостью (красностойкостью) и стойкостью к термическим трещинам. Прерывистая обработка сталей, включая нержавеющие и жаропрочных материалов.			
		DH108	AlCrN / AlTiCrN / TiSiN	Высокая износостойкость и прочность. Подходит для обработки труднообрабатываемых материалов, чугуна, стали на средней скорости, а также нержавеющей стали.			
	Износостойкость				JC8015	AlTiCrN	Особомелкозернистый твердый сплав. Обработка сырых и закаленных сталей и нержавеющих сталей.
		JC8118	AlTiCrN	Универсальный твердый сплав с покрытием PVD. Обладает высокой износостойкостью и теплостойкостью. Применяется для получистовой обработки широкого спектра материалов, в том числе нержавеющих сталей.			
M		JC5015	TiAIN	Универсальный особомелкозернистый твердый сплав, обладает высокой износостойкостью и прочностью. Прекрасно подходит для обработки сталей, нержавеющих сталей и чугунов. Подходит для "сухой" обработки и с применением СОЖ.			
Нержавеющие стали	Прошлост	JC5118	TiAIN	Универсальный особомелкозернистый твердый сплав. Обработка широкого спектра материалов. От черновой до получистовой типов обработки.			
	Прочность	JC8050	AlTiCrN	Твердый сплав с прекрасной теплостойкостью (красностойкостью) и стойкостью к термическим трещинам. Прерывистая обработка сталей, включая нержавеющие и жаропрочных материалов.			
		JC7550	TiAIN / AICrN	Сплав с PVD покрытием. Высокая стойкость к термическому удару и излому, стойкость к окислению. Подходит для черновой обработки материалов твердостью 35-40 HRC.			
		JC7560	TiAIN / AICrN	Твердый сплав с прекрасной теплостойкостью (красностойкостью) и стойкостью к термическим трещинам. Прерывистая обработка сталей, включая нержавеющие и жаропрочных материалов.			

Группа применяемости по ISO	Сплавы	Сплавы	Покрытие	Описание				
		DH202	AlCrN / AlTiCrN / TiSiN	Высокопрочное покрытие с твердостью 4000HV. Высокая производительность при чистовой обработке материалов с твердостью 60 HRC.				
		DH102	AICrN / AITiCrN / TiSiN	Высокая износостойкость и стойкость к окислению. Используется материал на основе высоко- прочного мелкозернистого сплава. Высокая производительность при чистовой обработке высокопрочных материалов.				
		DH103	AlCrN / AlTiCrN / TiSiN	Высокая износостойкость и стойкость к окислению, устойчивость к пластической деформации. Используется для обработки закаленной стали, чугунов, а также обычной стали на высоких скоростях.				
	Износостойкость	DH108	AlCrN / AlTiCrN / TiSiN	Высокая износостойкость и прочность. Используется для чистовой обработки труднообрабатываемых материалов и чугуна, обработка нержавеющей стали, средне- и высокоскоростная обработка стали.				
1/		DH110	AlCrN / AlTiCrN / TiSiN	Высокая износостойкость и прочность. Используется для обработки закаленной стали, средне- и высокоскоростная обработка чугуна и стали.				
n		JC605W	TiCN / Al ₂ O ₃ / TiN	Твердый сплав с повышенной износостойкостью и теплостойкостью (красностойкостью). Высокоскоростная обработка чугуна.				
Чугуны		DH115	AlCrN / AlTiCrN / TiSiN	Высокая прочность. Подходит для чистовой обработки закаленной стали, чугуна и для высокоскоростной обработки обычной стали.				
	Прочность	JC8015	AlTiCrN	Особомелкозернистый твердый сплав. Высокоскоростная обработка серых чугунов и чугунов с шаровидным графитом.				
		JC8118	AlTiCrN	Твердый сплав с покрытием , нанесенным методом PVD. Обладает высокой износостойкостью. Высокоскоростная обработка серых чугунов и чугунов с шаровидным графитом.				
		JC5015	TiAIN	Универсальный особомелкозернистый твердый сплав, обладает высокой износостойкостью и прочностью. Прекрасно подходит для обработки сталей, нержавеющих сталей и чугунов. Подходит для "сухой" обработки и с применением СОЖ.				
		JC5240	AlTiN	Мелкозернистый твердый сплав. Высокая прочность. Подходит для обработки стали, штамповой стали и чугуна.				
		DH202	AlCrN / AlTiCrN / TiSiN	Высокопрочное покрытие с твердостью 4000HV. Высокая производительность при чистовой обработке материалов с твердостью 60 HRC.				
		DH102	AlCrN / AlTiCrN / TiSiN	Высокая износостойкость и стойкость к окислению. Используется материал на основе высоко- прочного мелкозернистого сплава. Высокая производительность при чистовой обработке высокопрочных материалов.				
		DH103	AlCrN / AlTiCrN / TiSiN	Высокая износостойкость и стойкость к окислению, устойчивость к пластической деформации. Используется для обработки закаленной стали, а также при чистовой обработке высокопрочных материалов.				
	Износостойкость	DH108	AlCrN / AlTiCrN / TiSiN	Высокая износостойкость и прочность. Используется для чистовой обработки труднообрабатываемых материалов и чугуна, обработка нержавеющей стали, средне- и высокоскоростная обработка стали.				
		DH110	AlCrN / AlTiCrN / TiSiN	Высокая износостойкость и прочность. Используется для обработки закаленной стали, чугуна, а также при получистовой и чистовой обработке высокопрочных материалов.				
S	\bigwedge	DH115	AlCrN / AlTiCrN / TiSiN	Высокая прочность. Подходит для чистовой и получистовой обработки закаленной стали и чугуна, а также высокопрочных материалов.				
Жаропрочные		JC8015	AlTiCrN	Особомелкозернистый твердый сплав. Чистовая и получистовая обработка жаропрочных материалом и сплавов на основе Ті.				
и титано-		JC8118	AlTiCrN	Твердый сплав с покрытием PVD. Обладает высокой износостойкостью и теплостойкостью. Применяется для получистовой и чистовой обработки жаропрочных материалов и титановых сплавов.				
сплавы	Прочность	JC5015	TiAIN	Универсальный особомелкозернистый твердый сплав, обладает высокой износостойкостью и прочностью. Получистовая и получерновая обработка жаропрочных материалов и сплавов на основе Ті.				
	Прочность	JC7518	TiAIN / AICrN	Высокая стойкость к окислению и высокая износостойкость. Подходит для обработки титановых сплавов, жаропрочных сплавов и нержавеющих дуплексных сталей.				
						JC5118	TiAIN	Универсальный особомелкозернистый твердый сплав. Обрабтка широкого спектра материалов. От черновой до получистовой типов обработки.
					JC8050	AlTiCrN	Твердый сплав с покрытием, нанесенным методом PVD. Обладает высокой износостойкостью. Прерывистая обработка нержавеющих сталей и жаропрочных материалов.	
		JC7550	TiAIN / AICrN	Сплав с PVD покрытием. Высокая стойкость к термическому удару и излому, стойкость к окислению. Подходит для черновой обработки материалов твердостью 35-40 HRC.				
		JC7560	TiAIN / AICrN	Твердый сплав с покрытием, нанесенным методом PVD. Обладает высокой износостойкостью. Прерывистая обработка нержавеющих сталей и жаропрочных материалов.				
		DH202	AlCrN / AlTiCrN / TiSiN	Высокопрочное покрытие с твердостью 4000HV. Высокая производительность при чистовой обработке материалов с твердостью 60 HRC.				
		DH102	AlCrN / AlTiCrN / TiSiN	Твердый сплав с покрытием, нанесенным методом PVD. Обладает высокой износостойкостью. Обработка закаленных материалов.				
	Износостойкость	DH103	AlCrN / AlTiCrN / TiSiN	Высокая износостойкость и стойкость к окислению, устойчивость к пластической деформации. Используется для обработки закаленной стали, а также обычной стали на высоких скоростях.				
Н	$\langle \cdot \rangle$	DH110	AlCrN / AlTiCrN / TiSiN	Высокая износостойкость и прочность. Используется для обработки закаленной стали, чугуна, а также при получистовой и чистовой обработке высокопрочных материалов.				
Закаленные		JC8008	AlTiCrN	Твердый сплав с покрытием, нанесенным методом PVD. Обладает высокой износостойкостью. Обработка закаленных материалов.				
материалы	Прочность	JC8015	AlTiCrN	Твердый сплав с покрытием, нанесенным методом PVD. Обладает высокой износостойкостью. Обработка сырых, закаленных и нержавеющих сталей.				
		JC8118	AlTiCrN	Универсальный особомелкозернистый твердый сплав. Обработка широкого спектра материалов. Для черновой и получистовой обработки.				
		JC5118	TiAIN	Универсальный особомелкозернистый твердый сплав. Обработка широкого спектра материалов. Для черновой и получистовой обработки.				

Твердые сплавы

Рекомендации по выбору марки твердого сплава для фрезерной обработки

Обрабатываемый материал	DH202	DH102	DH103	DH108	DH110	JC605W JC608X	DH115	JC8015	JC8118	JC5015	JC7518	JC5118	JC5240	JC5040	JC8050	JC7550	JC7560
Углеродистые и легированные стали			±	±	±		+	±	±	±		±	+	+	±	±	±
Штамповые стали			+	+	+		±	±	±	±		±	+	+	±	±	±
Закаленные стали			+	+	+		±	+	+	±		+	±	±	±	±	+
Нержавеющие стали				±				+	+	+		+			+	+	+
Серые чугуны		+	±	±	±	+	±	±	±	±		±					
Высокопрочные чугуны	±	±	±	±	±	+	±	±	±	±		±					
Жаропрочные и титано-никелевые сплавы			±	±	±		±	+	+	±	+	+			+	+	±
Закаленные материалы	+	+	±		±			±	±	±		±					

Характеристики различных PVD покрытий

Покрытие	TiCN / Al2O3 / TiN JC605W / JC608X (CVD)	TiAIN (JC5000)	AlTiCrN (JC8000)	TiAIN / AICrN (JC7500)	AICrN / AITiCrN / TiSiN (DH1)	AICrN / AITiCrN / TiSiN (DH2)
Твердость, HV	3,200-3,700	2,900	3,500	3,700	3,500-3,700	3,900-4,100
Температура окисления	400~600	700~800	1,000~1,100	1,100-1,200	1,100-1,200	1,100-1,200
Износостойкость	****	***	***	****	****	****
Термостойкость	***	***	***	****	****	****

Керметы фирмы DIJET

Описание сплавов и технологические особенности применения

Основным компонентом безвольфрамовых твердых сплавов (керметов) являются карбиды (TiC) или нитриды (TiN) титана, или те и другие вместе.

По сравнению с карбидом вольфрама (WC), который является основной составляющей твердых сплавов, данные карбидные композиции демонстрируют наряду с прочностью высокую теплостойкость. Керметы имеют хорошее сопротивление пластической деформации режущих кромок и наростообразованию. Поэтому, пластины из керметов дают высокое качество обработанной поверхности. Данные характеристики керметов дают возможность использовать их на высоких скоростях для высокопроизводительной обработки. Обладают высокой размерной стойкостью, оптимальны для чистовой и получистовой обработки.

Сплавы без покрытия

Вид обработки	Сплавы	плавы Скорость резания, м/мин Описание						
Фрезерная	CX75	180 ~ 230	Большое содержание нитридов и однородная структура сплава. Обладает высокой прочностью и износостойкостью. Обработка сталей.					
обработка	CX90	150 ~ 200	Большое содержание нитридов и однородная структура сплава. Обладает высокой прочностью и износостойкостью. Обработка сталей и сплавов.					

Рекомендованные режимы применимы для обработки сталей. При обработке других материалов режимы корректируются в каждом конкретном случае.

Рекомендации по выбору марки твердого сплава

Обрабатываемый	Dur akaskarus	Фрезерная обработка				
материал	Вид обработки	CX75	CX90			
	Чистовая обработка	±				
Углеродистые	Получистовая обработка	+	±			
и легировнные стали	Получерновая обработка	±	+			
OT COST	Черновая обработка					
	Чистовая обработка	+				
Нержавеющие стали	Получистовая обработка	±				
Стали	Получерновая обработка					
	Чистовая обработка					
Чугуны	Получистовая обработка	±				
	Черновая обработка					

⁺ оптимальный выбор; ± возможное применение

