
END MILLS

TECHNICAL DATA TEXHUYECKUE AAHHLIE

БЫСТРОРЕЖУЩАЯ Стапь

ФРЕЗЫ CBN

ΦPE3b

ФРЕЗЫ i-SMART МОДУЛЬНОГО

ФРЕЗЫ X5070

ФРЕЗЫ

ФРЕЗЫ X-POWER

ФРЕЗЫ TitaNox-POWER

ФРЕЗЫ JET-POWER

ΦΡΕ3Ы V7 PLUS

ФРЕЗЬ

ФРЕЗЫ ALU-POWER

ФРЕЗЫ D-POWER ДЛЯ ГРАФИТА

ФРЕЗЫ D-POWER

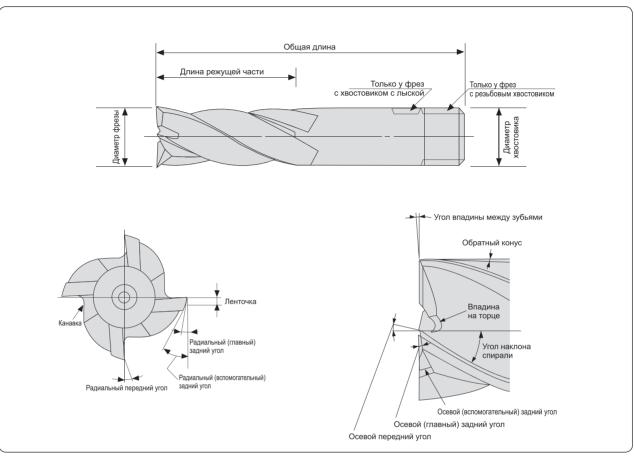
POVTEPL

ФРЕЗЫ CRX S

ФРЕЗЫ К-2

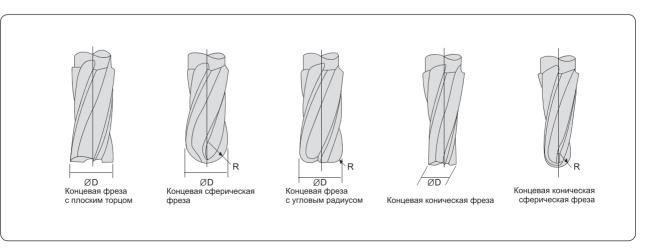
ФРЕЗЫ ОБЩЕГО НАЗНАЧЕНИЯ

ФРЕЗЫ ONLY


ФРЕЗЫ TANK-POWER

ФРЕЗЫ ОБЩЕГО НАЗНАЧЕНИЯ ИЗ БЫСТРОРЕЖУЩЕЙ

ФРЕЗЫ ИЗ БЫСТРОРЕЖУЩЕЙ



КОНСТРУКЦИЯ И ГЕОМЕТРИЯ КОНЦЕВЫХ ФРЕЗ

2

ТИПЫ КОНЦЕВЫХ ФРЕЗ

CIDIAD

ГВЕ<u>РДЫЙ</u>

БЫСТРОРЕЖУЩАЯ Сталь

ФРЕЗЫ СВМ

ФРЕЗЫ

ФРЕЗЫ i-SMART МОДУЛЬНОГО

ФРЕЗЫ Х5070

ФРЕЗЫ

ФРЕЗЫ X-POWER

ФРЕЗЫ TitaNox-POWER

ФРЕЗЫ JET-POWER

ФРЕЗЫ

ФРЕЗЫ

ФРЕЗЫ ALU-POWER

ФРЕЗЫ D-POWER ДЛЯ ГРАФИТА

ФРЕЗЫ D-POWER ДЛЯ УГЛЕПЛАСТИКА

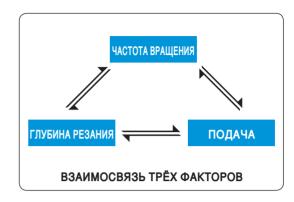
POYTEPH

CRX S

ФРЕЗЫ К-2

ФРЕЗЫ ОБЩЕГО НАЗНАЧЕНИЯ

ФРЕЗЫ ONLY


ФРЕЗЫ TANK-POWER

ФРЕЗЫ ОБЩЕГО НАЗНАЧЕНИЯ ИЗ БЫСТРОРЕЖУЩЕ

ФРЕЗЫ ИЗ БЫСТРОРЕЖУЩЕЙ СТАПИ

ТЕХНИЧЕСКИЕ ДАННЫЕ

Для получения наилучших результатов обработки необходимо учитывать такие важные факторы как: скорость резания, подача и глубина резания. Неправильно подобранные скорость резания и подача отрицательно сказываются на качестве обработки, ведут к снижению производительности и повреждению фрезы. Ниже приведена информация по подбору скорости резания и подачи при обработке фрезерными инструментами, в том числе концевыми фрезами. Данную информацию можно использовать в качестве рекомендаций при выборе условий обработки.

СКОРОСТЬ РЕЗАНИЯ

При фрезеровании окружная СКОРОСТЬ РЕЗАНИЯ измеряется в метрах в минуту (частота вращения (обороты в минуту) умноженная на длину окружности фрезы (в метрах). В данном контексте термины «окружная скорость», «скорость резания» означают одно и то же.

Частота вращения (об/мин)

 $N = \frac{1000V}{\pi \times D}$

V: Скорость резания (м/мин)

D: Диаметр фрезы (мм)

N: Частота вращения (об/мин)

 $\pi: 3.1416$

Указанные выше параметры выбираются соответственно конкретным условиям обработки. Например:

В следующих условиях рекомендуется выбирать более низкую скорость резания

Обработка твёрдых материалов

Обработка прочных материалов Обработка абразивных материалов

Обработка с большими припусками

Снижение износа инструмента

Продление срока эксплуатации инструмента

В следующих условиях рекомендуется выбирать более высокую скорость резания

Обработка мягких материалов

Получение высокого качества обрабатываемой поверхности

Использование фрез с малым диаметром

Обработка с малыми припусками

Обработка хрупких заготовок

Обработка с ручной подачей

Максимальная производительность

Обработка неметаллов

ПОДАЧА

Как правило, подача измеряется в миллиметрах в минуту. Она вычисляется по следующей формуле: подача на зуб х число оборотов в минуту х число зубьев фрезы. Ввиду наличия фрез разных размеров, с различным числом зубьев и частотой вращения все виды подач вычисляются на основе подачи на зуб. Подача на зуб лежит в основе вычисления минутной подачи вне зависимости от диаметра фрезы (большой или малый), типа расположения зубьев (с мелким или крупным шагом), и окружной скорости резания (высокая или низкая). Величина подачи на зуб влияет на толщину получаемой стружки и является важным фактором в определении стойкости фрезы.

Максимально высокая величина подачи на зуб обычно позволяет увеличить срок эксплуатации фрезы между заточками и увеличить производительность. Чрезмерная величина подачи может привести к перегрузке зубьев и вызвать отламывание или скалывание режущих кромок. При использовании рекомендуемой величины подачи на зуб необходимо учитывать следующие факторы.

БЫСТРОРЕЖУЩАЯ СТАЛЬ

ФРЕЗЫ СВМ

Минутная подача в миллиметрах в минуту (F.M.) $F.M = F.R.x \quad R.P.M$

i-Xmill

ФРЕЗЫ i-SMART МОДУЛЬНОГО

ФРЕЗЫ Х507

ΦΡΕ3Ь 4G Mill

ФРЕЗЫ X-POWER

ФРЕЗЫ TitaNox-POWER

ФРЕЗЫ JET-POWER

ФРЕЗЫ V7 PLUS

ФРЕЗЫ V7 Mill

ФРЕЗЫ ALU-POWER

D-POWER ДЛЯ ГРАФИТА ФРЕЗЫ

ДЛЯ УГЛЕПЛАСТИКА

PUYTEPB

CRX S

ФРЕЗЫ К-2

ФРЕЗЫ ОБЩЕГО НАЗНАЧЕНИЯ

ФРЕЗЫ ONLY ONF

ФРЕЗЫ TANK-POWER

ФРЕЗЫ ОБЩЕГО НАЗНАЧЕНИЯ ИЗ БЫСТРОРЕЖУЩЕЙ СТАЛИ

ФРЕЗЫ ИЗ БЫСТРОРЕЖУЩЕЙ СТАЛИ F.R. : подача на оборот в миллиметрах на оборот R.P.M .: частота вращения в оборотах в минуту

При использовании рекомендуемой величины подачи на зуб необходимо учитывать следующие факторы.

В следующих условиях рекомендуется выбирать более высокую подачу

Обработка с большими припусками, черновая обработка

Обработка жёстких материалов

Обработка мягких материалов

Использование фрез повышенной прочности

Обработка массивных заготовок

Обработка материалов с низкой прочностью на разрыв

Использование фрез с зубьями с крупным шагом

Обработка абразивных материалов

В следующих условиях рекомендуется выбирать более низкую подачу

Обработка с малыми припусками, чистовая обработка

Обработка хрупких заготовок

Обработка труднообрабатываемых материалов

Использование малогабаритных фрез малого диаметра

Прорезание глубоких пазов

Обработка материалов с высокой прочностью на разрыв Использование фрез с зубьями с мелким шагом

ВЫЧИСЛЕНИЕ СКОРОСТИ РЕЗАНИЯ И ПОДАЧИ ПРИ ОБРАБОТКЕ ФРЕЗАМИ И ДРУГИМИ ВРАЩАЮЩИМИСЯ ИНСТРУМЕНТАМИ

ИСКОМОЕ ЗНАЧЕНИЕ	имеющиеся даннь	ФОРМУЛА		
Скорость резания,	Диаметр инструмента в миллиметрах	=D	$V = \frac{D \times 3.1416 \times R.C.M.}{1000}$	
м/мин (V)	Частота вращения (об/мин)	=R.P.M.		
Частота вращения	Скорость резания (м/мин)	=V	R.C.M.= $\frac{V \times 1000}{D \times 3.1416}$	
(об/мин)	Диаметр инструмента в миллиметрах	=D		
Подача на оборот	Минутная подача (мм/мин)	=F.M.	$F.R. = \frac{F.M.}{R.C.M.}$	
(мм/об)	Частота вращения (об/мин)	=R.P.M.		
Минутная подача	Подача на оборот (мм/об)	=F.R.	F.M.= F.R.×R.C.M.	
(мм/мин)	Частота вращения (об/мин)	=R.P.M.		
Число зубьев, задействованных в минуту	Число зубьев фрезы Частота вращения (об/мин) Число зубьев фрезы	=T =R.P.M.	T.M=T×R.C.M.	
Подача на зуб	Подача на оборот (мм/об) Число зубьев фрезы	=R.P.M.	F.T.= <u>F.R.</u> T	
Подача на зуб	Минутная подача (мм/мин)	=F.M.	F.T.= F.M.	
	Частота вращения (об/мин)	=R.P.M.	T×R.C.M.	

ГВЕРДЫЙ

ФРЕЗЫ СВМ

ФРЕЗЬ

ФРЕЗЫ і-SMART МОДУЛЬНОГО

ΦΡΕ3Ы X507

ФРЕЗЫ

ФРЕЗЫ

ФРЕЗЫ TitaNox-POWER

ФРЕЗЫ JET-POWER

ФРЕЗЫ V7 PLUS

ФРЕЗЫ V7 Mill

ФРЕЗЫ ALU-POWER

ФРЕЗЫ D-POWER ДЛЯ ГРАФИТА

D-POWER ДЛЯ УГЛЕПЛАСТИН

POVTEPH

ФРЕЗЫ CRX S

ФРЕЗЫ К-2

ФРЕЗЫ ОБЩЕГО НАЗНАЧЕНИЯ

ФРЕЗЫ ONL

ФРЕЗЫ

ФРЕЗЫ ОБЩЕГО НАЗНАЧЕНИЯ ИЗ БЫСТРОРЕЖУЩЕ

ФРЕЗЫ ИЗ БЫСТРОРЕЖУЩЕ СТАПИ

ЗАТОЧКА

По мере затупления режущих кромок, фреза больше вибрирует при обработке, стружка становится мельче, а качество обрабатываемой поверхности ухудшается. В таком случае необходимо заточить фрезу. Ниже приведены случаи, при которых необходима заточка фрезы.

Рис. 1. Виды износа режущей кромки

6

ЗАТОЧКА ПО ВЕЛИЧИНЕ ИЗНОСА

Заточка фрез осуществляется по мере достижения определённой величины износа (Рис. 2). Это позволяет осуществлять заточку фрезы без ущерба для срока её эксплуатации. Величина износа может исчисляться в сотых или десятых долях миллиметра в зависимости от типа фрезы и требуемого качества обработки заготовки. Данный способ заточки применяется в масштабах серийного производства, когда необходимо снимать припуски разной величины или, когда обрабатываются материалы различных типов. Также данный способ можно использовать и при производстве небольших партий изделий.

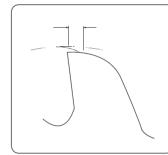


Рис. 2. Величина износа

ЗАТОЧКА ПЕРИФЕРИЙНЫХ РЕЖУЩИХ КРОМОК

ЗАТОЧКА ПЕРИФЕРИЙНЫХ РЕЖУЩИХ КРОМОК

Заточка заднего угла концевых фрез может осуществляться тремя способами как показано на Рис.3: посредством круглого шлифования или плоского шлифования, а также с помощью шлифовального станка с эксцентриком. Чаще всего формирование заднего угла концевых фрез осуществляют с помощью круглошлифовальных станков с эксцентриком. Это позволяет получить высокое качество затачиваемой поверхности и повысить прочность режущих кромок (рис. 4). В результате, срок эксплуатации инструмента увеличивается. Геометрия заднего угла бывает трех основных типов: вогнутый, плоский и эксцентриковый. Большинство выпускаемых сейчас концевых фрез имеют эксцентриковую геометрию заднего угла. Данный метод заточки позволяет достичь высокого качества поверхности заднего угла и увеличить прочность зуба. (Рис. 4) В результате увеличивается срок эксплуатации инструмента.

Эксцентриковая заточка	Вогнутая заточка	Плоская заточка		

Рис. 3. Три способа заточки главного заднего угла

ФРЕЗЫ CBN

ФРЕЗЫ

ФРЕЗЫ i-SMART МОДУЛЬНОГО

ФРЕЗЫ Х5070

ΦΡΕ3Ł

ФРЕЗЫ X-POWER

ФРЕЗЫ TitaNox-POWER

ФРЕЗЫ JET-POWER

ФРЕЗЫ V7 PLUS

ΦΡΕ36 V7 Mill

ALU-POWER

D-POWER ДЛЯ ГРАФИТА

ФРЕЗЫ D-POWER ДЛЯ УГЛЕПЛАСТИКА

РОУТЕРЫ

ФРЕЗЫ CRX S

ФРЕЗЫ К-2

ФРЕЗЫ ОБЩЕГО НАЗНАЧЕНИЯ

ФРЕЗЫ ONLY

ФРЕЗЫ TANK-POWER

ФРЕЗЫ ОБЩЕГО НАЗНАЧЕНИЯ ИЗ БЫСТРОРЕЖУЩЕЙ

ФРЕЗЫ ИЗ БЫСТРОРЕЖУЩЕЙ СТАЛИ

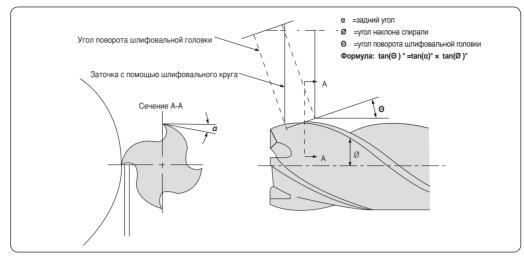


Рис. 4. Заточка по главной задней поверхности

УГОЛ ПОВОРОТА ШЛИФОВАЛЬНОЙ ГОЛОВКИ

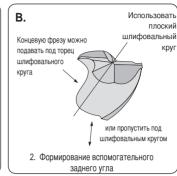
Эксцентриковая заточка заднего угла формируется путём позиционирования шлифовального круга параллельно оси инструмента или под небольшим углом к ней. Угол заточки изменяется путём поворота шлифовальной головки на нужный угол.

Таблица 1. РЕКОМЕНДУЕМЫЕ ВЕЛИЧИНЫ ЗАДНЕГО УГЛА ДЛЯ КОНЦЕВЫХ ФРЕЗ

Диаметр	Диаметр фрезы (мм) Показание стрелки индикатора согласно указанной величине эксцентрикового заднего угла		Колтрот нее	Угол поворота шлифовального круга (град.) Ө			Величина	Величина
			Контрольное расстояние	15° Угол спирали	30° Угол спирали	60° Угол спирали		вспомогательного заднего угла (α2)
-	Мин	Макс	-	*Угол	*Угол	*Угол	*Угол	*Угол
3.0	0.100	0.130	0.40	4° 24′	9° 25′	26° 28′	16° 02′	25°
6.0	0.090	0.125	0.50	3° 18′	7° 05′	20° 25′	12° 08′	25°
12.0	0.100	0.135	0.65	2° 46′	5° 46′	17° 23′	10° 15′	25°
25.0	0.095	0.140	0.80	2° 15′	4° 15′	14° 16′	8° 21′	25°
40.0	0.085	0.125	0.80	2° 01′	4° 33′	12° 48′	7° 29′	25°
50.0	0.085	0.125	0.80	2° 01′	4° 33′	12° 48′	7° 29′	25°

Радиальный (главный) задний угол формируется согласно указанным данным, однако он может отличаться в зависимости от типа фрезы, типа заготовки и текущих условий обработки.

^{*} Величина угла вычисляется на основе радиального (главного) заднего угла.


БЫСТРОРЕЖУЩАЯ СТАПЬ

8

ЗАТОЧКА ТОРЦОВЫХ ЗУБЬЕВ

На Рис. 5 (A – D) показана последовательность действий по заточке торцовых зубьев на примере двузубой концевой фрезы с плоским торцом. Три действия являются обязательными для выполнения, а одно – необязательным. Также приводятся рекомендации по установке. Затемнённые области обозначают затачиваемые поверхности.

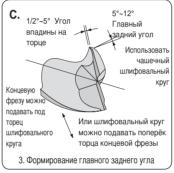


Рис. 5 ПОРЯДОК ДЕЙСТВИЙ ПРИ ЗАТОЧКЕ ТОРЦОВЫХ ЗУБЬЕВ (НА ПРИМЕРЕ ДВУЗУБОЙ КОНЦЕВОЙ ФРЕЗЫ С ПЛОСКИМ ТОРЦОМ)

КОНТРОЛЬ ПОСЛЕ ЗАТОЧКИ

Данный контроль осуществляется на основании данных, приведённых в Таблице 1.

Порядок действий для контроля величины радиального заднего угла с помощью индикаторов.

- 1. Установить фрезу так, чтобы она могла свободно поворачиваться, а торец при этом оставался неподвижным.
- 2. Установить индикатор таким образом, чтобы он соприкасался с самой вершиной режущей кромки, указывая в радиальном направлении (Рис. 6).
- 3. Переместить фрезу на контрольное расстояние, указанное в таблице, и использовать второй индикатор для проверки.
- 4. Проверить приведённые в таблице данные относительно ожидаемых показаний стрелки индикатора в зависимости от диаметра фрезы и величины заднего угла.

Radial Relief	Peripheral Cutting Edge	Cutting Angle		
Ход датчика Контрольное расстояние	Ширина ленточки а1 а2	расстояние Ход датчика		

Рис. 6. Установка индикатора для проверки

ФЬЕЗРІ СВІ

ФРЕЗЫ

ФРЕЗЫ I-SMART МОДУЛЬНОГО ТИПА

ФРЕЗЫ Х5070

ФРЕЗЫ

ФРЕЗЫ X-POWER

ФРЕЗЫ TitaNox-POWER

ФРЕЗЫ JET-POWER

ФРЕЗЫ V7 PLUS

ÞРЕЗЫ V7 Mill

ÞРЕЗЫ ALU-POWER

ФРЕЗЫ D-POWER ДЛЯ ГРАФИТА

ФРЕЗЫ D-POWER

POVTEPH

ФРЕЗЫ CRX S

ФРЕЗЫ К-2

ФРЕЗЫ ОБЩЕГО НАЗНАЧЕНИЯ

ФРЕЗЫ ONLY ONE

ФРЕЗЫ TANK-POWER

ФРЕЗЫ ОБЩЕГО НАЗНАЧЕНИЯ ИЗ БЫСТРОРЕЖУЩЕЙ СТАЛИ

ФРЕЗЫ ИЗ БЫСТРОРЕЖУЩЕЙ

ТЕХНИЧЕСКИЕ ДАННЫЕ БЫСТРОРЕЖУЩАЯ СТАЛЬ

ФРЕЗЫ СВМ

УСТРАНЕНИЕ ПРОБЛЕМ ПРИ ФРЕЗЕРОВАНИИ

	Проблема	Проявление проблемы	Устранение		
		 На начальном этапе контакта инструмента с заготовкой При завершении обработки 	Уменьшить подачу. Уменьшить вылет инструмента Уменьшить длину режущей кромки до минимальной необходимой величины.		
	Поломка инструмента	 В процессе обработки 	Уменьшить подачу. Регулярно проверять степень износа инструмента и своевременно заменять его. Заменить патрон или цангу. Уменьшить вылет Притупить режущую кромку. Если используется фреза с 4 зубьями, то заменить на фрезу с 2 зубьями (брикетирование стружки). При выполнении обработки без СОЖ осуществить подачу СОЖ. При выполнении обработки с подачей СОЖ на переднюю часть инструмента, изменить направление подачи СОЖ так, чтобы она на заднюю или боковую часть. Обеспечить обильную подачу СОЖ.		
		 Если неисправность возникла при смене направления подачи 	Выполнить команду круговой интерполяции (при использовании станка с ЧПУ) или временно остановить подачу (при наличии ручного механизма управления подачей). Непосредственно перед и после смены направления снизить подачу. Заменить патрон или зажимное приспособление.		
_		• Выкрашивание по углам	 Притупить режущую кромку. Попутное фрезерование Ý встречное фрезерование 		
		· Выкрашивание на длине, равной глубине резания	 Попутное фрезерование Ý встречное фрезерование Уменьшить скорость резания 		
	Выкрашивание	 Сколы в центральной части или по всей поверхности режущей кромки 	 Притупить режущую кромку. Изменить частоту вращения (если станок вибрирует). Увеличить/уменьшить скорость резания. В случае появления скрипящего звука во время обработки необходимо увеличить подачу. При обработке без СОЖ выполнить подачу СОЖ или обдув воздухом. Заменить патрон или цангу. 		
	режущей кромки	 Крупные трещины на режущей кромке 	 Уменьшить подачу. Если используется фреза с 4 зубьями, то заменить на фрезу с 2 зубьями. Притупить режущую кромку. Заменить патрон или цангу. Уменьшить скорость резания. При выполнении обработки без СОЖ осуществить подачу СОЖ. При выполнении обработки с подачей СОЖ на переднюю часть инструмента, изменить направление подачи СОЖ так, чтобы она подавалась на заднюю или боковую часть. Обеспечить обильную подачу СОЖ 		

ФРЕЗЫ ОБЩЕГО НАЗНАЧЕНИЯ

ТВЕРДЫЙ СПЛАВ

БЫСТРОРЕЖУЩАЯ СТАЛЬ

ФРЕЗЫ СВМ

ФРЕЗЫ i-Xmill

ФРЕЗЫ i-SMART МОДУЛЬНОГО

ФРЕЗЫ Х5070

ФРЕЗЫ

ФРЕЗЫ X-POWER

ФРЕЗЫ TitaNox-POWER

ФРЕЗЫ JET-POWER

ФРЕЗЫ V7 PLUS

ФРЕЗЫ V7 Mill

ФРЕЗЫ ALU-POWER

ФРЕЗЫ D-POWER ДЛЯ ГРАФИТА

ФРЕЗЫ D-POWER ДЛЯ УГЛЕПЛАСТИКА

РОУТЕРЫ

ФРЕЗЫ CRXS

ФРЕЗЫ К-2

ФРЕЗЫ ОБЩЕГО НАЗНАЧЕНИЯ

ФРЕЗЫ ONLY

ФРЕЗЫ TANK-POWER

ФРЕЗЫ ОБЩЕГО НАЗНАЧЕНИЯ ИЗ БЫСТРОРЕЖУЩЕЙ СТАЛИ

ФРЕЗЫ ИЗ БЫСТРОРЕЖУЩЕЙ СТАЛИ

ТЕХНИЧЕСКИЕ ДАННЫЕ

Проблема	Проявление проблемы	Устранение
Быстрый износ инструмента		 Уменьшить скорость резания. Встречное фрезерование Ý попутное фрезерование Увеличить подачу. Выполнить подачу СОЖ или обдув воздухом. Выполнить заточку по главной задней поверхности инструмента надлежащим образом.
	• Шероховатость поверхности	1. Уменьшить подачу. 2. Если используется фреза с 2 зубьями, то заменить на фрезу с 4 зубьями.
Низкое качество обработанной	 Налипание мелкой стружки 	 Увеличить скорость резания. Обеспечить обильную подачу СОЖ или обдув воздухом. Притупить режущую кромку. Встречное фрезерование Ý попутное фрезерование. Увеличить подачу или увеличить припуск на окончательную обработку.
поверхности	 Поперечные полоски на обработанной поверхности 	 Притупить режущую кромку. Использовать водонерастворимую СОЖ. Попутное фрезерование Y встречное фрезерование
	 Резание с превышением заданного припуска 	 Уменьшить глубину чистовой обработки Увеличить скорость резания. Уменьшить подачу.
	• Окончательные размеры в минус	 Встречное фрезерование Ý попутное фрезерование Уменьшить глубину чистового прохода. Заменить патрон цангу. Уменьшить вылет инструмента. Увеличить скорость резания.
Нарушена точность обработки	• Нарушение перпендикулярности	 Уменьшить глубину чистового прохода. Заменить патрон или цангу. Уменьшить вылет инструмента. Увеличить скорость резания. Если используется фреза с 2 зубьями, то заменить на фрезу с 4 зубьями. Уменьшить подачу. Проверить степень износа инструмента и при необходимости замените ег
Вибрации при обработке		 Увеличить подачу (если подача на зуб составляет более 0,05 мм, то уменьшить подачу). Изменить скорость резания. Заменить патрон или цангу. Уменьшить вылет инструмента. Для черновой обработки использовать фрезу с 2 зубьями, а для чистовой обработки использовать фрезу с 4 зубьями. Попутное фрезерование Ý встречное фрезерование

БЫСТРОРЕЖУЩАЯ СТАЛЬ

ФРЕЗЫ CBN

СРАВНИТЕЛЬНАЯ ТАБЛИЦА ДЛЯ ШКАЛ ИЗМЕРЕНИЯ ТВЁРДОСТИ

Твёрдость по шкале С Роквелла (индентор: алмазный конус, нагрузка: 150 кгс) (НСс)	Твёрдость по Виккерсу (HV)	Твёрдость по Бринеллю (диаметр шарика: 10 мм, приблизительная эквив. нагрузка: 29,42 кН) (НВ)	Твёрдость по шкале А Роквелла (индентор: алмазный конус, нагрузка: 60 кгс) (HRA)	Твёрдость по Шору (HS)	Примерная прочность на разрыв, Н/мм²
68	940	_	85.6	97	_
67	900	_	85.5 95		_
66	865	_	84.5	92	-
65	832	-	83.9	91	-
64	800	-	83.4	88	-
63	772	-	82.8	87	-
62	746	_	82.3	85	_
61	720	_	81.8	83	_
60	697	_	81.2	81	_
59	674	_	80.7	80	_
58	653	_	80.1	78	_
57	633	_	79.6	76	_
		_			_
56	613	_	79.0	75	
55	595	_	78.5	74	2079
54	577	-	78.0	72	2010
53	560	-	77.4	71	1952
52	544	500	76.8	69	1883
51	528	487	76.3	68	1824
50	513	475	75.9	67	1755
49	498	464	75.2	66	1687
48	484	451	74.7	64	1639
47	471	442	74.1	63	1578
46	458	432	73.6	62	1530
45	446	421	73.1	60	1481
44	434	409	72.5	58	1432
43	423	400	72.0	57	1383
42	412	390	71.5	56	1334
41	402	381	70.9	55	1294
40	392	371	70.4	54	1245
39	382	362	69.9	52	1216
38	372	353	69.4	51	1177
37	363	344	68.9	50	1157
36	354	336	68.4	49	1118
35	345	327	67.9	48	1079
34	336	319	67.4	47	1059
33	327	311	66.8	46	1030
32	318	301	66.3	44	1000
31	310	294	65.8	43	981
30	302	286	65.3	42	952
29	294	279	64.7	41	932
28	285	271	64.3	41	912
27	279	264	63.8	40	883
26	272	258	63.3	38	863
25	266	253	62.8	38	843
24	260	247	62.4	37	824
23	254	243	62.0	36	804
22	248	237	61.5	35	785
21	243	231	61.0	35	775
20	238	226	60.5	34	755
(18)	230	219	-	33	736
(16)	222	212	_	32	706
(14)	213	203	_	31	677
(12)	204	194	-	29	647
(10)	196	187	_	28	618
(8)	188	179	-	27	598
(6)	180	171	-	26	579
(4)	173	165	-	25	549
(2)	166	158	_	24	530
(O)	160	152	_	24	520
(0)	.50	.52			020

орежущей

ФРЕЗЫ ОБЩЕГО НАЗНАЧЕНИЯ